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Abstract. We propose an online multi-target tracker that exploits both
high- and low-confidence target detections in a Probability Hypothesis
Density Particle Filter framework. High-confidence (strong) detections
are used for label propagation and target initialization. Low-confidence
(weak) detections only support the propagation of labels, i.e. tracking
existing targets. Moreover, we perform data association just after the
prediction stage thus avoiding the need for computationally expensive
labeling procedures such as clustering. Finally, we perform sampling by
considering the perspective distortion in the target observations. The
tracker runs on average at 12 frames per second. Results show that our
method outperforms alternative online trackers on the Multiple Object
Tracking 2016 and 2015 benchmark datasets in terms tracking accuracy,
false negatives and speed.

Keywords: Multi-Target Tracking, Probability Hypothesis Density, Par-
ticle Filter.

1 Introduction

Multi-target tracking-by-detection performs temporal association of target de-
tections to estimate trajectories, while compensating for miss-detections and
rejecting false-positive detections. Trajectories can be generated online [1], of-
fline [2] or with a short latency [3]. Online trackers estimate the target state at
each time instant as detections are produced. In case of miss-detections, online
trackers may rely on predictive models to continue tracking until a matching
detection is found [4]. Offline trackers use both past and future detections and
can therefore better cope with miss-detections using re-identification [5].

An effective filter for online state estimation is the Probability Hypothe-
sis Density (PHD) filter, which can cope with clutter, spatial noise and miss-
detections [6,7]. The PHD filter estimates the state of multiple targets by build-
ing a positive and integrable function over a multi-dimensional state whose inte-
gral approximates the expected number of targets [6,8]. The posterior function
can be computed based on a Bayesian recursion that leverages the set of (noisy)
detections and it is approximated using Sequential Monte Carlo for computa-
tional efficiency via a set of weighted random samples (particles) [8]. This ap-
proximation is known as the PHD Particle Filter (PHD-PF) and involves four
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Fig. 1: Block diagram of the proposed multi-target tracking pipeline. At time
k, the predicted particles Xk|k−1,λ are calculated with a perspective-dependent

prediction. Strong Z+
k and weak Z−k detections are associated to the predicted

states calculated from Xk|k−1,λ. After the early association, two subsets of detec-

tions are used for tracking. Detections Ẑk inherit the identity of the correspond-
ing trajectories and are used for tracking existing states; Žk are un-associated
strong detections and are used for initializing new states. After the perspective-
dependent update, and resampling the particles Xk are used to estimate the
states Xk.

main steps [6,8,7]: the prediction of particles over time; the update of the weights
of the particles based on new detections; the resampling step to avoid that only
few particles monopolize the whole mass; and state estimation. A PHD filter
needs an additional mechanism to provide target identity information. For ex-
ample, the particles can be clustered and labeled after resampling to enable the
temporal association of the clusters with previous states [7,9,10]. This additional
mechanism is computationally expensive and error prone.

In this paper, we formulate an early association strategy between trajecto-
ries and detections after the prediction stage, which allows us to perform target
estimation and state labeling without any additional mechanisms. Our online
multi-target tracker exploits both strong (certain) and weak (uncertain) detec-
tions. Strong detections have a higher confidence score and are used for initial-
ization and tracking. Weak detections have a lower confidence score and are used
only to support the continuation of an existing track when strong detections are
missing. We also introduce a perspective-dependent sampling mechanism to cre-
ate newborn particles depending on their distance from the camera. Fig. 1 shows
the block diagram of the proposed online multi-target tracker.

In summary, our contributions include (i) a strategy for the effective ex-
ploitation of low-confidence (weak) detections; (ii) a procedure to label states
via an early association strategy; (iii) the exploitation of perspective in predic-
tion, update and newborn particle generation. The tracker works on average at
12 frames per second (fps) on an i7 3.40GHz, 16GB RAM computer, without
any parallelization. We validate our tracking pipeline without using any appear-
ance features and compare our method against state-of-the-art alternatives on
the MOT15 and MOT16 benchmark datasets.
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(a) (b) (c)

Fig. 2: Example of strong and weak detections at frame 43 (crop) in PETS09-
S2L1. (a) Initial target detections Z∗k ; (b) combined detections Zk; (c) strong
detections (green) Z+

k and weak detections (red) Z−k after classification.

2 Strong and weak detections

Let a (large) set of target detections z∗k ∈ Z∗k , ideally without false negatives
but potentially with multiple false positives, be generated at each time step
k (Fig. 2 (a)). These detections can be produced for example by running in
parallel multiple detectors, by changing the operational parameters of a detector
or with a combination of these two approaches. During this ‘over-detection’
process a target is likely to generate multiple overlapping detections. Overlapping
detections produced by the same target may be combined into a single detection
zk ∈ Zk using, for example, non-maxima suppression [11,12] (Fig. 2 (b)) forming
the set of combined detections Zk. Let each combined target detection be defined
as

zk = (xk, yk, wk, hk)
T
, (1)

where (xk, yk) is the center and (wk, hk) are the width and height of the bounding
box of the detection on the image plane. Let each zk be associated to a detection
confidence-score sk ∈ [0, 1].

We categorize the set Zk based on sk into two subsets: strong (certain)
and weak (uncertain) detections (Fig. 2 (c)). This categorization can be ob-
tained using the score confidences or via learning certain metrics on a training
dataset [13]. Strong detections Z+

k = {z+
k : sk ≥ τs}, where τs is a confidence

threshold, are more likely to be true positives. We will use strong detections
for trajectory initialization and for tracking existing targets. Weak detections
Z−k = {z−k : sk < τs} are potential false positives. We will use weak detections
for tracking existing targets to shorten the prediction time and to maintain the
tracking uncertainty low. The value of τs influences the ratio between the false
positives and the false negatives, as we discuss in Section 6.1.
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3 Perspective-dependent prediction

Let Λk be the set of existing identities at time k whose elements are λ ∈ Λk. Let
the state be defined as

xk,λ = (xk,λ, ẋk,λ, yk,λ, ẏk,λ, wk,λ, hk,λ)
T
, (2)

where (xk,λ, yk,λ) is the center, (ẋk,λ, ẏk,λ) are the horizontal and vertical com-
ponents of the velocity, (wk,λ, hk,λ) are the width and height and λ is the identity
of the estimated state. Let the set of all estimated states at k be Xk whose el-
ements are xk,λ ∈ Xk. The elements of this set are obtained at each time step
from the set of all existing particles Xk whose elements are xik,λ ∈ Xk, where

xik,λ is the ith particle.
The prediction step assumes the motion of a target to be independent from

the others and propagates each particle xik−1,λ as

xik,λ = Gkx
i
k−1,λ +Nk, (3)

where Gk is an affine transformation defined as

Gk =

 Ak 02×2 02×2

02×2 Bk 02×2

02×2 02×2 I2×2

 , (4)

where 0 and I are the zero and identity matrices, respectively. Nk is an additive

Gaussian noise defined as Nk =
(
nxk, n

ẋ
k, n

y
k, n

ẏ
k, n

w
k , n

h
k

)T
, where each compo-

nent of Nk is an independent Gaussian variable with zero mean and standard
deviation proportional to the bounding box size in the previous frame.

As a target moving at constant velocity produces a smaller apparent dis-
placement on the image plane when it is farther from the camera, we improve
the model in Eq. 4 by considering the effect of foreshortening. To this end, we
model Nk as a function of the distance from the camera. Specifically, we set the
standard deviation of the noise for the horizontal and vertical components to be
proportional to the width wk−1,λ and height hk−1,λ of the state, respectively.

In addition to the above, target acceleration variations, noisy detections and
camera motion may generate erroneous predictions. To address these problems,
instead of relying only on the previous time step [7], we average the past M states
over a longer time interval [t−M, t−1]. Therefore, Ak andBk dynamically update
the position and velocity via the average velocity in the previous M frames:

Ak =

(
1

uk,λ
ẋk,λ

0
uk,λ
ẋk,λ

)
, Bk =

(
1

vk,λ
ẏk,λ

0
vk,λ
ẏk,λ

)
, (5)

where uk,λ, vk,λ are the average horizontal and vertical velocities of the estimated
state xk,λ, respectively, whose values are computed as

(uk,λ, vk,λ) =
1

M

M∑
j=1

(xk−j,λ, yk−j,λ) , (6)
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where M = min (Mk,λ,Mmax), Mk,λ is the number of time steps since the target
xk,λ was initialized and Mmax the maximum number of time steps.

The weights of the particles, pik|k−1, are not modified during the prediction
state, therefore

πik|k−1 = πik−1, i = 1, ..., Lk−1, (7)

where Lk−1 is the number of existing particles at k − 1.

4 Labeling

4.1 Early association (EA)

The PHD-PF estimates the state of each target without labels (i.e. without
identity) [9]. Let πik−1 be the weight associated to particle xik−1,λ. The PHD-PF
posterior Dk−1|k−1(·) is approximated as

Dk−1|k−1(xk−1,λ) ≈
Lk−1∑
i=1

πik−1δ
(
xk−1,λ − xik−1,λ

)
, (8)

where δ(·) is the Kronecker’s delta function. Various works have been published
aiming to address the lack of identities in the PHD-PF: (i) clustering after re-
sampling the particles on the right-hand side of Eq. 8 [7], (ii) keeping a separate
tracker for each target and then perform ‘peak-to-track’ association [14], (iii)
combining clustering techniques with the introduction of hidden identifiers to
the samples of the PHD [15,10,8]. These solutions are computationally expen-
sive and may introduce estimation errors. To avoid these problems, we move the
association stage earlier in the pipeline.

We associate the elements of Z+
k and Z−k to the predicted states using the

Hungarian algorithm [16]. We refer to this association as early association be-
cause, unlike [8,15,7], it is performed before the update and resampling stages.
The association cost, ωk, between a detection zk and the predicted state xk|k−1,λ

is

ωk =
dl(zk,xk|k−1,λ)

Ql
·
ds(zk,xk|k−1,λ)

Qs
, (9)

where dl(·) and ds(·) are the Euclidean distances between the position and
bounding box size elements, respectively. Ql is the diagonal of the image (i.e.
the maximum position variation) and Qs is the area of the image (i.e. the max-
imum size variation). Note that we multiply the normalized distances instead of
averaging them to penalize when they are dissimilar (e.g. when two targets are
far from each other in the scene but appear close to each other on the image
plane).

When a trajectory is not associated to any (strong or weak) detections, the
state is estimated using existing particles only. When the trajectory is not associ-
ated to any detections for a certain temporal interval (V frames, see Section 6.1),
the state will be discarded before the EA and therefore the weight of its particles
will gradually decrease toward zero.
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EA enables the tracker to generate newborn particles that inherit the prop-
erties of its associated state (inheritance) or that produce a new identity (ini-
tialization).

4.2 Inheritance

Strong detections Z+
k generate Jk newborn particles to repopulate the area

around existing states. The newborn particles are added to the Lk−1 existing
particles. In [8,7], the newborn particles are created from a newborn importance
function pk(·) [7], which can be independently modeled from the estimated states,
as a Gaussian process:

xik,λ ∼ pk(xik,λ|z+
k ) =

1

|Z+
k |

∑
∀z+
k ∈Z

+
k

N (xik,λ; z+
k , Σ), (10)

where | · | is the cardinality of a set, N (·) is a Gaussian distribution and Σ is the
covariance matrix. The covariance matrix can be dynamically updated based on
parameters as detection size or video frame rate (see Section 6.1). Each newborn
particle has an associated weight, πik, defined as

πik =
1

Jk

γk(xik,λ)

pk(xik,λ|z
+
k )
, i = Lk−1 + 1, ..., Lk−1 + Jk, (11)

where γk(·) is the birth intensity, which is assumed to be constant when no
prior knowledge about the scene is available [7]. Typically, Jk is chosen to have,
on average, ρ particles per newborn target [8]. The process described in Eq. 10
could create newborn particles that are dissimilar from the corresponding state
as they are independently created.

Unlike [17,15] that included identities in the state, we consider the identity
λ ∈ Λk as attribute of the state and propagate it over time. Therefore, |Λk| is
the estimated number of targets at time k.

Let Ẑ+
k and Ẑ−k be the sets that contain, respectively, strong and weak de-

tections that are associated to one of the predicted states, i.e. to an existing
trajectory. Let Ẑk = Ẑ+

k ∪ Ẑ
−
k be the set of detections that inherit the identity

of the corresponding trajectories.

We create newborn particles from Ẑk and inherit properties from their as-
sociated predicted states: the position and bounding box size are created from
detections, whereas velocity and identity are inherited from the associated states.

We use a mixture of Gaussians as importance function to sample position
and bounding box size elements from the detections as

xik,λ ∼ pk(xik,λ|ẑk) =
1

|Ẑk|

∑
∀ẑk∈Ẑk

N (Cxik,λ;Cẑk, CΣk), (12)
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where

C =

(
D 04×2

02×4 I2×2

)
, D =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , (13)

and
Σk = diag(σxk , σ

ẋ
k , σ

y
k , σ

ẏ
k , σ

w
k , σ

h
k )T , (14)

where Σk is a time-variant standard deviations matrix that is defined based on
the size of the detection bounding box and the weight of the newborn particles
is calculated as in Eq. 11. This solution allows us to address the perspective dis-
tortion during the generation of newborn particles. The values of these standard
deviations are learned from a training dataset (see Section 6.1).

The velocities and the identity are inherited from the trajectory as

ẋik,λ = ẋk−1,λ + nẋk,

ẏik,λ = ẏk−1,λ + nẏk,

λk = λk−1, (15)

where (ẋk−1,λ, ẏk−1,λ) are the velocity components of a trajectory Xλ (i.e. each

state with identity λ for all k) and nẋk and nẏk are Gaussian noises that model
the velocity variations of a target.

Fig. 3 shows the benefit of weak detections. Without weak detections, miss-
detections produce false negative trajectories and identity switches (Fig. 3, sec-
ond row). When weak detections are used the targets are correctly tracked
(Fig. 3, third row).

4.3 Initialization

While un-associated weak detections are discarded after EA, un-associated strong
detections form the set Žk = Z+

k \Ẑ
+
k and initialize new target identities. New-

born particles associated to a new target are generated in a limited volume of the
state space around the un-associated strong detections. The same new identity
is assigned to each newborn particle.

We treat spawning targets as new targets. The newborn importance func-
tion pk(·) in Eq. 10 can regulate where targets are likely to spawn or enter in
a scene [18]. Each detection in Žk initializes a new trajectory and generates
newborn particles using a mixture of Gaussians as

xik,λ ∼ pk(xik,λ|žk) =
1

|Žk|

∑
∀žk∈Žk

N (xik,λ; žk, Σk), (16)

where Σk is defined in Eq. 14 and the weights of the particles are calculated as
in Eq. 11.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3: Examples of tracking at frames 178, 193 and 240 (crops) in PETS09-
S2L1 (not) using weak detections. (a), (b), (c) Strong (green) and weak (red)
detections. (d), (e), (f) Without using weak detections target 5 is lost and a new
trajectory is later initialized with identity 20. (g), (h), (i) Using weak detections
target 5 is correctly tracked.

Fig. 4 shows an example of how newborn particles are created. The target
on the right is initialized because of the presence of an un-associated strong
detection. The target with identity number 2 is localized with a weak detection.
The weak detection in this case is a false positive that is discarded because it is
not associated with any predicted states.

5 Perspective-dependent update, resampling and state
estimation

Let the set of particles that share the same identity be Xk,λ whose elements are
xik,λ ∈ Xk,λ. After new detections are generated, the weights of the particles, πik,
are recalculated for allowing the particles to update the estimation [9,19,7].
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(a) (b)

Fig. 4: Example of newborn particles generated at frame 43 (crop) in PETS09-
S2L1. (a) Color-coded target identities; (b) existing particles (green dots) and
newborn particles (red dots). The newborn particles initialize a new trajectory
from an un-associated strong detection.

The weights at k are updated as

πik =

[
pM +

∑
∀zk∈Zk

(1− pM )gk(zk|xik,λ)

κk(zk) + Ck(zk)

]
πik|k−1, (17)

where pM is the probability of miss-detection, κk(·) is the clutter intensity asso-
ciated to a detection zk [19,7], Ck(zk) is defined as

Ck(zk) =

Lk−1+Jk∑
i=1

(1− pM )gk(zk|xik,λ)πik|k−1, (18)

and gk(zk|xik,λ) is the likelihood function defined as

gk(zk|xik,λ) = N (Czk;Cxik,λ, CΣk), (19)

where C is defined in Eq. 13. The likelihood function, gk(·) computes the location
and bounding box similarities. Unlike [7,10] where Σ = Σk is fixed, we define
Σk in Eq. 14 as a time-variant matrix that regulates the location and bounding
box similarity between particles and detections (i.e. the particles of an object
far from the camera will be less spread than those of a closer object due to
the perspective). Fig. 5 shows examples of the use of the proposed perspective-
dependent approach.

After the update step, resampling helps avoiding the degeneracy problem
[20]. The standard multinomial resampling [20,8] splits particles proportionally
to their weights, frame-by-frame independently. Because newborn particles have
in general a lower weight than existing particles, new targets may not be ini-
tialized due to repetitive deletion of their particles during resampling. To allow
newborn particles to grow over time and reach a comparable weight to that of
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(a) (b)

(c) (d)

Fig. 5: Examples of tracking under perspective changes at frames 32 and 102
(crops) in ETH-Bahnhof, and at frames 178 and 375 (crops) in ADL-Rundle-8.
Targets 5 and 6 (see (a), (b)) and targets 33 and 35 (see (c), (d)) are correctly
tracked despite considerable perspective changes.

existing particles, newborn particles are resampled independently from existing
particles using a Multi-stage Multinomial Resampling step [7]. Finally, each state
xk,λ ∈ Xk is estimated as the average of all resampled particles sharing the same
identity:

xk,λ =
1

|Xk,λ|
∑

∀xik,λ∈Xk,λ

xik,λ. (20)

6 Results

6.1 Experimental setup

We validate the proposed tracker1, the Early Association Probability Hypothe-
sis Density Particle Filter (EA-PHD-PF), and compare it against state-of-the-
art online tracking methods on the MOT15 and MOT16 benchmark datasets
(motchallenge.net) [21,22]. We use the public detections provided by the MOT
benchmark and our private detections produced by combining detections from

1 Results are available at: http://www.eecs.qmul.ac.uk/~andrea/eamtt.html.

motchallenge.net
http://www.eecs.qmul.ac.uk/~andrea/eamtt.html


Online multi-target tracking with strong and weak detections 11

state-of-the-art person detectors. We refer to the tracker using the public detec-
tions from MOT benchmark as EA-PHD-PF(Pub) and to the tracker using the
private detections as EA-PHD-PF(Priv).

In the specific implementation presented here, the combined detection has
position and bounding box size equal to the weighted average of the position and
bounding box size of the detections that contributed to the combination. We use
detections generated by Discriminatively Trained Deformable Part Models (DT-
DPM) [12], Scale Dependent Pooling (SDP) [23], Aggregate Channel Features
(ACF) [24] trained on INRIA (ACF-I) and Caltech (ACF-C) datasets. We reward
detections generated by the combination of a larger number of detectors (possi-
ble true positives) and penalize isolated detections (possible false positives). We
normalize the confidence score of each detector using the 99th percentile of the
detection scores generated by each detector over the training set (and truncating
to 1). Then we combine all detections via voting when their overlap area divided
by their union area exceeds τf = 1/3. Given the normalized detection confidence
of each detection, sj , the confidence score of the combined detection, sk ∈ [0, 1],

is sk = U
D2

∑U
j=1 sj , where U is the number of contributing detectors and D is

the total number of detectors.
We allow to perform association between detections and predicted states only

if their overlap area divided by their union area exceeds τa = 1/3. The parameter
that controls when a trajectory will not seek for more detections is V = dfe/1s,
where f is the frame-rate of the video sequence. The parameter that controls
the maximum possible number of frames to consider in the prediction model is
Mmax = df/2e/1s.

We train the parameters of our method on the MOT15 and MOT16 train-
ing datasets and then use these parameters in MOT15 and MOT16 testing se-
quences, respectively. For the set of public detections τs = 0.39 in MOT15 and
τs = 0.20 in MOT16. For the set of private detections τs = 0.35 in both datasets2.
The number of particles per target, ρ, is 500. The standard deviation values used
for the prediction, update and newborn particle generation are modelled as a
function of the bounding box size as

σx = wxkstd

({
1

wgk

d2xgk
dk2

}
∀g

)
, σy = hxkstd

({
1

hgk

d2ygk
dk2

}
∀g

)
,

σẋ = wxkstd

({
1

wgk

d3xgk
dk3

}
∀g

)
, σẏ = hykstd

({
1

hgk

d3ygk
dk3

}
∀g

)
,

σw = wxkstd

({
1

wgk

d2wgk
dk2

}
∀g

)
, σh = hxkstd

({
1

hgk

d2hgk
dk2

}
∀g

)
,

where g ∈ [1, G] indicates a state element of a ground-truth trajectory, std(·) is

the standard deviation operation, d2(·)
dk2 is the second derivative that quantifies

2 Larger values of τs reduce the number of false positives and lead to a more conser-
vative initialization of the trajectories.
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Table 1: Online tracking results on the MOT15 (TOP-7 trackers) and on the
MOT16 (all available trackers) test datasets. Dark gray indicates the best and
light gray indicates the second best scores.
Dataset Tracker Det MOTA MOTP FAF MT (%) ML (%) FP FN IDS Frag Hz

AMPL [21] Priv 51.9 75.0 1.2 26.4 24.8 6,963 22,225 372 1,130 2.8
LKDAT CNN [21] Priv 49.3 74.5 1.0 20.8 28.4 6,009 24,550 563 1,155 1.2
MDP SubCNN [27] Priv 47.5 74.2 1.5 30.0 18.6 8,631 22,969 628 1,370 2.1
justry [21] Priv 45.2 74.7 2.4 40.6 16.0 14,117 18,769 764 1,413 2.6
kalman mdp [21] Pub 37.2 74.5 2.8 38.7 13.3 16,196 20,328 2,065 1,856 21.8
mLK [21] Pub 35.1 71.5 1.0 12.3 38.3 5,678 33,815 383 1,175 1.0
HybridDAT [21] Pub 35.0 72.6 1.5 11.4 42.2 8,455 31,140 358 1,267 4.6
EA-PHD-PF Pub 22.3 70.8 1.4 5.4 52.7 7,924 38,982 833 1,485 12.2

MOT15

EA-PHD-PF Priv 53.0 75.3 1.3 35.9 19.6 7,538 20,590 776 1,269 11.5

AMPL [22] Priv 50.9 77.0 0.5 16.7 40.8 3,229 86,123 196 639 1.5
olCF [22] Pub 43.2 74.3 1.1 11.3 48.5 6,651 96,515 381 1,404 0.4
OVBT [22] Pub 38.4 75.4 1.9 7.5 47.3 11,517 99,463 1,321 2,140 0.3
GMPHD HDA [22] Pub 30.5 75.4 0.9 4.6 59.7 5,169 120,970 539 731 13.6
EA-PHD-PF Pub 38.8 75.1 1.4 7.9 49.1 8,114 102,452 965 1,657 11.8

MOT16

EA-PHD-PF Priv 52.5 78.8 0.7 19.0 34.9 4,407 81,223 910 1,321 12.2

the noise in the variation of x, y, w and h over time, and d3(·)
dk3 is the third

derivative that quantifies the noise in the variation of ẋ and ẏ over time. We
use the bounding box size at time k, wxk and hxk , in order to adapt the noise
to the scale of the bounding box. Note that estimated states are used in the
prediction step (Section 3), whereas detections are used in the generation of
newborn particles (Section 4) and update step (Section 5).

The evaluation measures are Multiple Object Tracking Accuracy (MOTA),
Multiple Object Tracking Precision (MOTP) [25], False Alarm per Frame (FAF),
Mostly Tracked targets (MT), Mostly Lost targets (ML) [26], Fragmented tra-
jectories (Frag), False Positives (FP), False Negatives (FN), Identity Switches
(IDS) and tracker speed in Hz. For a detailed description of each metric, please
refer to the MOT website and [21].

6.2 Discussion

Table 1 compares the tracking results of our proposed method using both public
and private detections with other online trackers submitted to the MOT15 and
MOT16 benchmark3. The upper part of the table (MOT15) shows that EA-
PHD-PF(Priv) outperforms AMPL, LKDAT CNN, MDP SubCNN and justry,
in terms of MOTA. The number of FN and the ML percentage are overall lower
than the other trackers. This is due to the ability of EA-PHD-PF(Priv) to ro-
bustly perform state estimation exploiting weak detections without relying on
the prediction only when (strong) detections are missing. The higher number
of IDS compared to the other methods is due to the fact that we rely only on
the position and size of the bounding box inferred from the detections and we
are not using any appearance models to discriminate nearby targets. Moreover,
we do not model spawning targets. Therefore, identity switches are more likely

3 Last accessed on 10th August 2016.
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(a) (b) (c)

Fig. 6: Examples of tracking under multiple occlusions at frames 22, 97 and 261
(crops) in Venice-1/MOT16-01 using EA-PHD-PF(Priv). (a) Target 6 is cor-
rectly tracked while it occludes another target. (b) The occluded target becomes
visible and trajectory 6 drifts towards it. Target 6 is reinitialized as target 19 at
frame 22. (c) Intermittent detections cause target 6 to be reinitialized as target
29 at frame 97.

in crowded scenes, as shown in Fig. 6. The bottom part of Table 1 (MOT16)
shows that EA-PHD-PF(Priv) outperforms AMPL, olCF and OVBT in terms
of MOTA, FN and FP. However, the number of IDS is higher than AMPL and
olCF, because the features they use are better able to discriminate targets. The
results using public detections rank our tracker EA-PHD-PF(Pub) at half-rank
overall as it generates a high amount of FN.

Fig. 7 compares sample tracking results using public (first row) and private
(second row) detections. We can observe along the first row how the target
firstly initialized as 115 is then reinitialized, lost and reinitialized again due to
the high number of FN in the public dataset. However, the (same) target firstly
initialized as 41 in the second row is correctly tracked along the whole sequence.
We can observe the presence of false-positive trajectories (i.e. green, purple and
red targets in Fig. 7b). These false-positive trajectories are difficult to remove
because they are caused by persistent false-positive detections appearing for a
few consecutive frames and the confidence scores of those detections are as high
as those of true positive detections. With EA-PHD-PF(Priv) these detections
are filtered out without adding any false-negative trajectories.

7 Conclusion

We presented an online multi-target tracker that exploits strong and weak de-
tections in a Probability Hypothesis Density Particle Filter framework. Strong
detections are used for trajectory initialization and tracking. Weak detections
are used for tracking existing targets only to reduce the number of false nega-
tives without increasing the false positives. Moreover, we presented a method to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Examples of tracking at frames 240, 461, 645 and 717 (crops) in MOT16-
03 using public (first row) and private (second row) detections. (a)-(d) The
target identified as 115 is reinitialized multiple times due to occlusions and lack
of detections. (e)-(h) The (same) target, identified as 41, is correctly tracked.

perform early association between trajectories and detections, which eliminates
the need for a clustering step for labeling. Finally, we exploited perspective in-
formation in prediction, update and newborn particle generation. Results show
that our method outperforms alternative online trackers on the Multiple Object
Tracking 2016 and 2015 benchmark datasets in terms tracking accuracy, false
negatives and speed. The tracker works at an average speed of 12 fps. Future
work will involve using appearance features, such as color histograms, to reduce
trajectory fragmentation.
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