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ABSTRACT
The ego-noise generated by the motors and propellers of a micro
aerial vehicle (MAV) masks the environmental sounds and con-
siderably degrades the quality of the on-board sound recording.
Sound enhancement approaches generally require knowledge of
the direction of arrival of the target sound sources, which are diffi-
cult to estimate due to the low signal-to-noise-ratio (SNR) caused
by the ego-noise and the interferences between multiple sources.
To address this problem, we propose a multi-modal analysis ap-
proach that jointly exploits audio and video data to enhance the
sounds of multiple targets captured from an MAV equipped with
a microphone array and a video camera. We first perform audio-
visual calibration via camera resectioning, audio-visual temporal
alignment and geometrical alignment to jointly use the features
in the audio and video streams, which are independently gener-
ated. The spatial information from the video is used to assist sound
enhancement by tracking multiple potential sound sources with a
particle filter. Then we infer the directions of arrival of the target
sources from the video tracking results and extract the sound from
the desired direction with a time-frequency spatial filter, which
suppresses the ego-noise by exploiting its time-frequency sparsity.
Experimental results with real outdoor data verify the robustness
of the proposed multi-modal approach for multiple speakers in
extremely low-SNR scenarios.

KEYWORDS
audio-visual sensing; ego-noise reduction; micro aerial vehicles; mi-
crophone array; multi-modal localization; enhancement of multiple
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1 INTRODUCTION
Multi-rotor micro aerial vehicles (MAV) with audio sensing capa-
bilities could localize, recognize and enhance the sound emitted
from an aerial or ground object [1, 16, 20, 35]. However, a strong
ego-noise is generated by rotating motors and propellers, which
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are closer to the on-board microphones than ground or aerial tar-
get sources [24]. The strong ego-noise leads to an extremely low
signal-to-noise ratio (e.g. SNR < -15 dB), which masks the target
sounds. By exploiting the spectral and spatial characteristics of the
acoustic signals, microphone-array algorithms can suppress the
ego-noise and enhance the target sounds [25]. However, to steer
the spatial filter, these algorithms typically require the direction
of arrival (DOA) of the target sound, which is difficult to estimate
from the microphone signal due to the extremely low SNR, the non-
stationarity of the ego-noise, and multiple active sound sources.
While video-assisted sound enhancement has already been inves-
tigated [14, 22, 30], existing works address indoor environments
and static audio-visual sensors. To the best of our knowledge, our
work is the first to combine audio and visual modalities for the
challenging problem of sound enhancement from an MAV.

In this paper, we integrate the audio and visual modalities to en-
hance target sounds captured by an array of microphones mounted
on an MAV. We first synchronize the audio and video streams and
geometrically align the spatial information estimated from the two
streams. We then robustly estimate the position of potential sound-
emitting objects (e.g. human speakers) from the video stream. Fi-
nally, we design a time-frequency spatial filter which, based on the
location provided by the video, extracts the target sound from the
audio streams captured by multiple microphones. By exploiting the
complementarity of the two modalities, the proposed audio-visual
sensing system works in extremely low SNR scenarios and can
isolate, track and enhance the sounds from a time-varying number
of speakers. A demonstration of the results is available online 1

The paper is organized as follows. Sec. 2 reviews the related work.
Sec. 3 formulates the problem. Sec. 4 describes the audio-visual
calibration procedure. Sec. 5 presents the proposed video-assisted
sound enhancement method. Experimental results are discussed in
Sec. 6 and conclusions are drawn in Sec. 7.

2 RELATEDWORK
The ego-noise of a flying MAV leads to extremely low SNRs, non-
stationarity and varying dynamics. These are considerable chal-
lenges for noise reduction and sound source localization algorithms.

Beamforming is a widely-used microphone-array technique,
which enhances the sound from a specific direction by coherently
delaying and summing the microphone signals based on the trans-
mitting delays from the sound source to the microphones [9]. The
performance of a fixed beamformer is usually limited by the size of
the microphone array and the number of the microphones. Blind

1http://cis.eecs.qmul.ac.uk/projects/multimodalmav/



source separation (BSS) has recently been used for ego-noise re-
duction [24]. BSS treats the target and noise signals equally and
separates the individual sources from the mixed signals captured by
the microphone array [23]. The application of BSS to MAV-based
ego-noise reduction is straightforward as the locations of the micro-
phones and the target sources are not needed. However, BSS suffers
from the inherent permutation ambiguities, which are difficult to
address in low-SNR scenarios [29].

Time-frequency spatial filtering has emerged recently for MAV
sound enhancement [25]. Based on the observation that the ego-
noise and the target sound usually have concentrated energy at
sparsely isolated time-frequency bins, the time-frequency approach
estimates the DOA of the sound at each bin and then combines the
localization results from all the bins for noise reduction. While the
time-frequency approach can suppress the ego-noise effectively,
similarly to beamforming, the design of the spatial filter also re-
quires the DOA of the sound.

Classical microphone-array sound source localization approaches
include steered response power (SRP) and multiple signal classi-
fication (MUSIC) [28, 29]. The performance of both approaches
degrades significantly in low-SNR scenarios [15]. Recently, it was
proposed that combining time-frequency spatial filtering with a
kurtosis measure would lead to noise-robust sound source localiza-
tion [26]. However, this approach assumes a single target and thus
cannot handle a multi-source scenario.

Video-based object detection and tracking can provide spatial
information about the objects in the field of view of the camera.
Features used to represent object models include intensities [3, 5, 6],
edges [3, 6] and textures [31]. The performance of these models
can be compromised in challenging scenarios with low contrast or
crowds. Color attributes can be used as an explicit color representa-
tion [10] and inter-object occlusions can be used as clues to improve
the detection of partly occluded objects [7]. Recently, deep learning
techniques have been proposed where image regions with objects
of interest produce a high response of a pool of filters [18, 32, 33].

Multi-object trackers can estimate the trajectory of the targets
by temporally associating sets of noisy detections generated at
each frame. This association compensates for false-positive and
false-negative detections using spatio-temporal relationships [2, 17].
The probability hypothesis density (PHD) filter [11, 12] estimates
the state of multiple targets by building a positive and integrable
function over a multi-dimensional state, usually known as poste-
rior. This probabilistic filter can cope with clutter, spatial noise
and missing detections while effectively filtering the state estima-
tion using current and past information only. The posterior can
be estimated using Bayesian recursion. As this iterative process
is computationally intractable, the first order posterior function
can be approximated using a sequential Monte Carlo method with
weighted samples. This approximation is known as probability hy-
pothesis density particle filter (PHD-PF) [21] and the weighted
samples are known as particles.

3 PROBLEM FORMULATION
Fig. 1 depicts the audio-visual sensing platform consisting of a
circular microphone array and a camera mounted on the MAV. The
microphone array is placed on top of the MAV in order to avoid
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Figure 1: The audio-visual sensing platform consisting of a
microphone array and a camera mounted on the MAV. (a)
Side and (b) top view of the real object. (c) 3D and (d) 2D ge-
ometrical representation.

the influence of the wind from the propellers. The microphone
array contains M = 8 microphones whose signals are sampled
synchronously with a multichannel analogue-to-digital converter.
The center of the camera overlaps that of the microphone array
to ease audio-visual calibration. The audio and video acquisition
devices work independently of each other.

Fig. 2 illustrates the coordinate systems of the microphone array
and the camera. We use the pinhole model for the camera [36]. A
real-world object P is projected onto the image plane p, withOC ,
O I and F being the center of the camera, the principal point (center)
in the image and the focal length, respectively. We only consider
the DOA of the sound on the 2D horizontal plane. The horizontal
angles of the object with respect to the microphone array and the
camera are indicated as θa and θv , respectively.

We consider an unknown number of speakers, N , who might
talk or remain silent in front of the camera. The locations of the
microphones are known to be R = [r1, . . . ,rM ], where rm =

[rmu , rmv ]
T is the location of them-th microphone. The superscript

(·)T denotes the transpose operator. The video I = {Ik }
K
k=1

, where
Ik is the k-th frame and K is the total number of video frames, has
frame rate fc . The microphone signal x(n) = [x1(n), . . . ,xM (n)]T

contains the sound from the N speakers and the ego-noise, i.e.

x(n) =
N∑

j=1

s j (n) +v(n), (1)

where s j (n) = [s1j (n), . . . , sMj (n)]
T denotes the sound from the

j-th speaker,v(n) = [v1(n), . . . ,vM (n)]T denotes the ego-noise and
n is the digital audio sequence index.

We aim to design a set of spatial filters {w1(n), · · · ,wN } that can
extract the N target sounds from the noisy microphone recordings,

yj (n) = w j (n) ∗x(n) =
M∑

i=1

LP∑

p=1

w ji (p)xi (n−p), j = 1, · · · ,N (2)
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Figure 2: Schematic illustration of the coordinate systems
of the microphone array and the camera (pinhole model).
The 3D position P of a real-world object is projected on the
image plane as p. θa and θv are the angles, on the 2D hori-
zontal planes, of the object with respect to the microphone
array and the camera.OM andOC are the centers of the mi-
crophone array and camera, respectively,O I = (u0,v0) is the
principle point (center) of the image and F is the focal length
of the camera.

where w j = [w j1(n), · · · ,w jM (n)] denotes the spatial filter corre-
sponding to the j-th target, LP is the length of the filter, and the
operator ‘∗’ denotes the spatial filtering procedure [23].

The proposed work can be decomposed into three elements,
namely, audio-visual calibration (Sec. 4), visual object detection
and tracking (Sec. 5.1), and spatially informed audio enhancement
(Sec. 5.2). The first step calibrates the locations of the camera andmi-
crophones and aligns the audio and video streams so that they can
be correctly associated. The second step works on the video stream
by estimating the location of potential sound emitting objects. The
third step works on the audio stream by designing a time-frequency
spatial filter to enhance the sound from the video-informed di-
rections. The block diagram of the proposed multi-modal source
localization and sound enhancement pipeline is shown in Fig. 3.

4 AUDIO-VISUAL CALIBRATION
Calibration of the microphone array and the camera is needed so
that the features from the audio and video streams can be jointly ex-
ploited. The calibration procedure consists of camera resectioning,
audio-visual temporal alignment and geometrical alignment.

4.1 Camera resectioning and audio-visual
temporal alignment

To compensate for the deformation produced by the lens and to
infer the real-world location of objects from the image, we use
camera resectioning to estimate the intrinsic and distortion parame-
ters [8, 36]. We first record a calibration video of a checkerboard at
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Figure 3: Block diagram of the proposedmulti-modal source
localization and sound enhancement pipeline, which con-
sists of three main steps: audio-visual (AV) calibration, vi-
sual object detection and tracking, and spatially informed
audio enhancement.

different locations and then estimate the camera parameters with
the MATLAB Camera Calibration Toolbox [13]. The radial and tan-
gential lens distortion parameters are represented by ξ and the
intrinsic matrix is defined as

K =

⎡
⎢
⎢
⎢
⎢
⎣

Fu cs u0
0 Fv v0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, (3)

where F = Fu+Fv
2 is the camera focal length measured in pixels

(see Fig. 2), u0 and v0 indicate the location of the principle point
(optical center) in the image, and cs is the skew axis coefficient. The
parameter K will be used in Sec. 4.2 for audio-visual geometrical
alignment.

The parameter ξ is used to undistort the frames as

Īk = D(Ik , ξ ), (4)

where D(·) represents the undistortion procedure [8].
We then estimate the unknown time offset between the micro-

phone array and the video camera, δav , to temporally align the
audio and video streams. As our camera has its own built-in micro-
phone, we only need to detect the time offset between the audio
sequences from the array microphone and the camera microphone.
We present a calibration sound (e.g. clapping) to estimate the offset
between the two audio sequences.

If we represent the two segments of sequences as sa (n) and sv (n),
where n ∈ Nc , both containing the calibration sound, then the time
offset δav is determined by maximizing the correlation between
the two segments:

δav = argmax
δ ∈[δL ,δH ]

∑

n∈Nc

sa (n)sv (n − δ ), (5)

where δL and δH denote predefined minimum and maximum de-
lays, respectively. The parameter δav will be used in Sec. 5.2 when
temporally associating the spatial information from audio and video
streams.

4.2 Audio-visual geometrical alignment
When an object emits a sound, the angle on the 2D microphone ar-
ray plane (i.e. its DOA) can be estimated from the microphone-array
signals or from the visual signal, e.g. θa and θv in Fig. 2. Since the



microphone array and the video camera have their own coordinate
systems, it is important to know the relationship between the θa
and θv to infer the DOA of the sound from the corresponding object
in the image.

If the camera and the microphone array are placed with their
centers and coordinates aligned (see Fig. 2), θa should be equal to θv .
However, it is difficult to satisfy this condition by mounting the two
devices on the MAV manually. We address this displacement error
numerically, assuming that these two DOAs are linearly related as

θa = a1θv + a2, (6)

where a = [a1,a2]
T are unknown constants.

To estimate a1 and a2, we record the sound from a speaker at Q
different locations with both the microphone array and the camera
while the MAV is muted. Let us use the sound from the q-th location
as an example. For the audio, the DOA of the sound, θ

q
a , can be

estimated from the microphone signal with the classical SRP-PHAT
algorithm [26]. For the video, we manually label the sound emitting
point (speaker’s mouth) in the image, e.g. pq = (uq ,vq ), and then
estimate the DOA as

θ
q
v = arctan

(uq
F

)
. (7)

We estimate the DOAs of the speaker from the audio as θa =

[θ1a , . . . ,θ
Q
a ]T and from the video as θv = [θ1v , . . . ,θ

Q
v ]T. The pa-

rameter a can be estimated from θa and θv using least-square
fitting. This parameter will be used in Sec. 5.2 when a sound event
in the audio and video streams is geometrically associated.

5 VIDEO-ASSISTED SOUND ENHANCEMENT

5.1 Visual object detection and tracking
As the video information is not affected by the strong ego-noise, we
propose to exploit this modality to obtain the spatial information
of the objects which potentially emit sound, e.g. a person. We first
detect people in each frame and then track their location over time
with a multiple-object tracker.

For person detection, we employ the Aggregate Channel Features
(ACF) algorithm [5], a supervised object detector which can robustly
detect quasi-rigid objects from images, e.g. faces, pedestrians or cars.
In each undistorted video frame Īk , the object detector generates a

set of candidate detections represented as Dk = {dik }
|Dk |
i=1 , where

|·| indicates the cardinality operator. Each individual detection can
be represented as

dik =
(
uik ,v

i
k ,w

i
k ,h

i
k

)
, (8)

where (ui
k
,vi

k
) is the center, (wi

k
,hi

k
) are the width and height of

the detection on the image plane, respectively, and i ∈ [1, |Dk |] is
the detection index. These detections can be inaccurate, generating
false-positive or false-negative errors, and do not have any identity
information.

For object tracking, we employ the early association probabil-
ity hypothesis density particle filter (EA-PHD-PF) [19], which es-
timates the trajectory of multiple objects from noisy detections.
Through four processing steps (i.e. prediction, early association,
update and resampling) for each undistorted video frame Īk , the
algorithm approximates a state probability function using a set of

particles Ek =
{
$ei
k

} |Ek |

i=1
, where each particle $ei

k
= {λi

k
,π i

k
,ei

k
} is

associated to the identity information λi
k
, the posteriori probability

π i
k
, and the state information

eik =
(
u λ̃k ,v

λ̃
k , $u

λ̃
k , $v

λ̃
kw

λ̃
k ,h

λ̃
k

)

λ̃=λi
k

(9)

where u λ̃
k
,v λ̃

k
,w λ̃

k
,hλ̃

k
are defined similarly as in Eq. 8 and $u λ̃

k
and

$v λ̃
k
are the horizontal and vertical velocities, respectively, and λi

k
∈

{1, · · · ,Λk } where Λk is the number of identities that are detected
by the tracker. Finally, the state of each target with identity λ is
estimated as

eλk =
1

∑
i π

i
k

∑

i

π ike
i
k , (10)

where i ∈ I
λ̃
and Iλ denotes a set of indexes with λi

k
= λ̃.

Based on Fig. 2, the DOA of each identified object in the frame
Īk is estimated as

θλvk = arctan

(
uλ
k

F

)

, λ = 1, · · · ,N , (11)

where N = Λk , and F is the focal length obtained as in Sec. 4.1.

5.2 Spatially informed audio enhancement
Given the potential sound emitting objects detected by the video
tracker, we could design a set of spatial filters to extract the sounds
from those visually informed directions. This is a challenging task
due to the existence of strong ego-noise with extremely low SNR, e.g.
< -15 dB. For this aim, we employ a time-frequency (T-F) spatial fil-
tering, a recently emerged MAV sound enhancement approach [25].
This approach can extract the sound from the desired DOA from
the strong ego-noise by exploiting the time-frequency sparsity of
the acoustic signals. The visually-informed audio enhancement
approach consists of five steps.

In the first step, we geometrically transform the video trajectory

of each potential sound source, Θλ
vk
=

{
θλ
vk

}K

k=1
, to the audio

reference system as

θλak = a1θ
λ
vk + a2, (12)

where a1 and a2 are the geometrical alignment parameters obtained
in Sec. 4.2.

Second, we transform the time-domain signal x(n) into the time-
frequency domain asx(ω, l) via short-time Fourier transform (STFT)

with frame length Nω and shift size Ns =
Nω

2 , where ω and l are
the frequency and audio frame indexes, respectively.

Suppose we have a segment of signal l ∈ [lb , le ], corresponding
to a time segment of n ∈ [nb ,ne ] where nb = lbNs and ne = leNs .
The DOA of the target sound in this segment is estimated as the
median value among all video-informed estimates, i.e.

θd = median
{
θλak

}

k ∈[(nb+δav )/fc ,(ne+δav )/fc ]
, (13)

where δav is the time offset between the audio and video streams,
as obtained in Sec. 4.1.



Third, given the microphone signal x(ω, l) and location of the
microphones R, we build a spatial likelihood function

γTF(ω, l ,θ ) =

R

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

M∑

m1,m2=1
m1!m2

xm1 (ω, l)x
∗
m2

(ω, l)

|xm1 (ω, l)xm2 (ω, l)|
ej2π fωτ (m1,m2,θ )

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪
⎭

, (14)

where the superscript (·)∗ denotes complex conjugation, the op-
erator R{·} denotes the real component of the argument, and

τ (m1,m2,θ ) =
∥rm2−r θ ∥−∥rm1−r θ ∥

c denotes the time difference of
arrival between the sound at two microphonesm1 andm2, and c

denotes the sound velocity in the air. The term ej2π fωτ (m1,m2,θ )

is the inter-channel phase difference theoretically computed with

the delay τ ; the term
xm1 (ω,l )x

∗
m2

(ω,l )

|xm1 (ω,l )xm2 (ω,l ) |
is the inter-channel phase

difference measured from xm1 and xm2 . The spatial likelihood γTF is
high when these two inter-channel phase differences are consistent
with each other. The DOA can thus be estimated as

θTF(ω, l) = argmax
θ ∈(−180◦,180◦]

γTF(ω, l ,θ ). (15)

Fourth, we detect the time-frequency bins that belong to the
target sound, assuming that the time-frequency bins belonging to
the target sound have their DOA estimates normally distributed
around the mean θd , with standard deviation σd . The detection is
performed by measuring the closeness of each time-frequency bin
to the target sound:

cd (ω, l ,θd ) = exp

(

−
(θTF(ω, l) − θd )

2

2σ 2
d

)

, (16)

where cd (·) ∈ [0, 1]. The higher cd (·), the higher the probability
that the (ω, l)-th bin is dominated by the target sound. We then
calculate the correlation matrix of the noisy microphone signal and
of the target sound, i.e.

Φxx (ω, l ,θd ) =
1

le − lb + 1

le∑

l=lb

x(ω, l)xH(ω, l), (17)

Φss (ω, l ,θd ) =
1

le − lb + 1

le∑

l=lb

c2d (ω, l ,θd )x(ω, l)x
H(ω, l), (18)

where the closeness measure cd (ω, l ,θd ) indicates the contribution
of the (ω, l)-th bin to the correlation matrix, and the superscript
(·)H denotes the Hermitian transpose. Given this estimated target
correlation matrix, an adaptive beamformer can be formulated
easily. We use the multichannel Wiener filter [4]

wTF(ω, l ,θd ) = Φ
−1
xx (ω, l)ϕss1(ω, l ,θd ), (19)

where ϕss1(ω, l ,θd ) is the first column of Φss (ω, l ,θd ). The sound
coming from θd is extracted as

yTF(ω, l ,θd ) = w
H
TF(ω, l ,θd )x(ω, l). (20)

Finally, we transform yTF(ω, l ,θd ) in the time-frequency back to
the time domain, obtaining yTF(n,θd ), i.e. we can extract the sound
from N potential speakers sequentially and represented them as
y1(n), · · · ,yN (n).
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Figure 4: Experimental setup illustrating the projection of
the position of the MAV on the ground (red circle) and the
nine landmarks (black circles).

6 EVALUATION

6.1 Experimental setup
Dataset. We built a prototype that is composed of a 3DR Iris quad-
copter, a GoPro camera, and a microphone array (Fig. 1). We used
this prototype to record two datasets: the evaluation and the demon-
stration dataset. Fig. 4 depicts the recording setup, where people
move among nine predefined landmarks in a park and the MAV is
fixed on a tripod. In the evaluation dataset, we record the ego-noise
and the speech separately in order to investigate the performance
comprehensively. When recording the ego-noise, the MAV operates
at 50%, 100% and 150% of the power level at hovering state. When
recording the clean speech, we have two people moving randomly
along the landmarks. At each location, they talk sequentially for
about 40 s each and then move simultaneously to their next location.
We mix the two speech signals and the ego-noise to generate the
microphone signal. In the demonstration dataset, we record the
ego-noise and the speech simultaneously. We have three people
moving along the landmarks randomly. At each location, the three
people randomly choose to talk alone or simultaneously, each for
about 10 s, and then simultaneously move to their next location.
The MAV operates at the power level of hovering state during the
whole recording.

Algorithms for comparison. We compare the proposed multi-
modal (audio-visual) method, which steers the time-frequency spa-
tial filter at the directions provided by the visual module, against a
mono-modal (audio-only) method, which estimates the direction of
the sound from the microphone signal [26] and then steers the time-
frequency spatial filter at it. In addition, we compare time-frequency
filtering with a traditional delay-and-sum beamformer [25].

Implementation details and parameters. The GoPro camera
is set to record at a wide field of view, at 1920x1080 resolution and
fc = 30 Hz. The audio processing employs a segment-wise process-
ing scheme, which divides the audio signals into non-overlapped
segments of 6 s long and processes them sequentially. The STFT
frame length is set to 1024 with half overlap. The standard deviation
in (16) is set to σd = 10◦.

Evaluationmeasures.We are interested in evaluating the noise
reduction performance in terms of signal-to-noise ratio (SNR),
the separation between competing speakers in terms of signal-to-
interference ratio (SIR) [27], and also the enhanced speech quality
in terms of Perceptual Evaluation of Speech Quality (PESQ).



Given a spatial filter w(n) and the microphone signal x(n) =∑N
λ=1 sλ(n) +v(n) with its constituent components assumed to be

known, the spatial filtering output can be written as

y(n) = w(n) ∗ x(n) =
N∑

λ=1

w(n) ∗ sλ(n) +w(n) ∗v(n)

=

N∑

λ=1

ysλ (n) + yv (n).

(21)

The SNR and SIR for the λ-th source are calculated in target-sound-
active periods Nsλ as

SNRλ = 10 log10

∑
n′ ∈Nsλ

y2sλ (n
′)

∑
n′ ∈Nsλ

(
y2v (n

′) +
∑
λ′!λ y

2
sλ′ (n

′)
) , (22)

SIRλ = 10 log10

∑
n′ ∈Nsλ

y2sλ (n
′)

∑
n′ ∈Nsλ

(∑
λ′!λ y

2
sλ′ (n

′)
) . (23)

Finally, PESQ ∈ [0, 4.5] is a widely-used measure to assess the over-
all quality of the processed speech se (n) relative to the referenced
clean speech so (n) [34]. The higher PESQ, the better the speech
quality. We represent the PESQ operator as Q{se , so }. The PESQ
of the λ-th source is calculated by comparing the enhanced signal
ysλ (n) with the clean signal in the first microphone s1λ(n), i.e.

PESQλ = Q{ysλ , s1λ }. (24)

6.2 Discussion
We first evaluate the sound enhancement performance of the time-
frequency spatial filter assuming that the DOA of the speaker is
known. Fig. 5 depicts the sound enhancement results, in terms of
SNR and PESQ, for a single speaker with a varying distance (2 m,
4 m and 6 m) from the MAV, which operates at three different power
levels. The locations of the speaker are 8 , 5 and 1 . For each
evaluation case, we choose 5 segments of noisy data (each lasting
6 s) and calculate the average performance measure. The input SNR
varies depending on the distance between the speaker and the MAV
and also on the operation power of the MAV. In all evaluation cases,
the input SNR varies between −20 dB and −30 dB, which indicates
an extremely challenging scenario for sound enhancement. The
PESQ values of the input microphone signals are all below 1.5.
The time-frequency spatial filter tends to perform better for higher
input SNRs. In all evaluation cases, the spatial filter can improve the
SNR remarkably by up to 20 dB, and improve the PESQ by up to 1.
In comparison to time-frequency filtering, the fixed beamforming
performs much worse in all evaluation scenarios, even if the DOA
is given.

Fig. 6 depicts the sound enhancement results, in terms of SIR,
SNR and PESQ, for two speakers talking concurrently at a varying
distance (2 m, 4 m and 6 m) from the MAV, which operates at
hovering power level. The locations of the two speakers are ( 7 ,
9 ), ( 4 , 6 ) and ( 1 , 3 ). For each evaluation case, we choose 5
segments of noisy data (each lasting 6 s) and calculate the averaged
performance measure. For each speaker, the input SIR is around
0 dB while the input SNR is below -20 dB, and the PESQ is below 1.
The spatial filter can extract a target speaker by suppressing the
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Figure 5: Sound enhancement by time frequency filtering
(TF) and fixed beamforming (BF) for a single speaker with a
varying distance from theMAV, which operates at 50%, 100%,
and 150% of the hovering power level. Note that the DOA of
the speaker is assumed to be known.
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Figure 6: Sound enhancement by time frequency filtering
(TF) and fixed beamforming (BF) for two speakers talking
concurrently at varying distances from the MAV, which op-
erates at the hovering power level. Note that the DOAs of the
two speakers are assumed to be known.

interfering speaker and the ego-noise simultaneously. The spatial
filter can isolate the two speakers well by improving their input
SIR by up to 10 dB. The spatial filter can improve the input SNR
by up to 20 dB and improve the PESQ value by up to 1.5. The fixed
beamforming performs much worse than time-frequency filtering
in all evaluation scenarios.

We then evaluate the sound enhancement performance of the
two types of spatial filters (audio-only and audio-visual) when
processing the evaluation sequence continuously in a segment-by-
segment style. Fig. 7 presents the processing results for a single
speaker whose location varies with time and the MAV is operat-
ing at the hovering power level. Fig. 7(a) depicts the trajectory
( 7 → 4 → 1 → 3 ) of the speaker as well as their voice activity
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Figure 7: Results for a single speaker. (a) Trajectory and
voice activity of the speaker. (b) Estimated DOAs from audio
and video. (c) SNR of the enhanced sound by two spatial fil-
ters (audio-only and audio-visual). (d) PESQ of the enhanced
sound by two spatial filters.

(manually labeled). The video tracker can capture the location of
the speaker accurately. Fig. 7(b) compares the DOA estimation re-
sults between the video tracker and the audio-only localizer. The
audio localization results are consistent with the video tracking
results when the speaker is close to the MAV and the input SNR is
relatively high (i.e. in the first two positions). The audio localization
results deviate from the video tracking results significantly when
the speaker is farther from the MAV and the input SNR becomes
lower (i.e. in the last two positions). Fig. 7(c) presents the SNR,
which is calculated in speech-active periods only, obtained by the
two spatial filters. For all four positions, the input SNR is below
-20 dB and decreases as the distance increases. For the first two po-
sitions, audio-only and audio-visual spatial filters perform similarly
and improve the SNR by up to 20 dB. For the last two positions,
the audio-visual spatial filter can still improve the SNR up to 20 dB,
while the audio-only spatial filter fails. This behavior is expected
since the results are consistent with the DOA estimation shown
in Fig. 7(b). Consequently, as shown in Fig. 7(d), the audio-visual
spatial filter can improve the PESQ value of the input signal by up
to 1 for all four positions, while the audio-only spatial filter works
only for the first two positions.

Fig. 8 and Fig. 9 present the processing results when two speakers
are in the scene. The trajectory of the two speakers are speaker
A: 7 → 4 → 1 → 3 and speaker B: 9 → 8 → 5 → 1 .
Fig. 8(a) depicts the trajectories of the video tracking results for the
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Figure 8: Results when two speakers are talking concur-
rently. (a) Trajectory and voice activity of the speakers. (b)
Estimated DOAs from audio and video.
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Figure 9: Results for speaker A when two speakers are talk-
ing concurrently. (a) SIR of the enhanced sound by two spa-
tial filters (audio-only and audio-visual). (b) SNR of the en-
hanced sound by two spatialfilters. (c) PESQ of the enhanced
sound by two spatial filters.

two speakers. It can be clearly observed that the video tracker can
capture the location of both speakers accurately. Fig. 8(b) compares
the DOA estimation results of the video tracker and the audio-
only localizer. The audio localizer has only one output and cannot
handle the ambiguities in the multi-speaker scenario. The audio
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Figure 10: Sample results on the demonstration dataset. The
proposed method tracks the DOAs of three people and ex-
tracts the sound of each speaker from the noisymicrophone
signal. (a) Recording setup. (b) Undistorted video frame. (c)
Video tracking results. (d) Crops of the upper-body of the
speakers. (e) Waveforms of the original microphone signal.
(f) Enhanced audio stream for each speaker. The voice activ-
ity of each speaker is manually labeled.

localization result either detects only one speaker (i.e. in the first
three positions) or deviates from both speakers (i.e. in the fourth
position). We obtain similar sound enhancement results for the two
speakers and thus only show the results for speaker A achieved
by two spatial filters (audio-visual and audio-only) in Fig. 9. The
audio-visual spatial filter clearly outperforms the audio-only one
in terms of SIR, SNR and PESQ.

Finally, Fig. 10 shows the results for the demonstration dataset
where the trajectories of the three speakers are A: 4 → 4 →

4 → 4 → 6 → 6 , B: 5 → 5 → 5 → 5 → 5 → 5
and C: 6 → 6 → 6 → 6 → 4 → 4 . The voice activity of
each speaker during the recording is manually labeled. Based on
the DOA informed by the tracker, the time-frequency spatial filter
can extract the sound of each speaker from the noisy microphone
signals. The visual tracker can robustly track each speaker even
under the severe visual occlusions that happen at around 100 s (see
Fig. 10(c)).

7 CONCLUSIONS
We explored the combination of audio and visual modalities to en-
hance sounds captured from an MAV. The visual module employs
a multi-object tracker that locates potential sound emitting objects,
whereas the audio module employs a time-frequency spatial filter-
ing technique to enhance the sound from the directions provided
by the video module. We have shown that by exploiting the two
modalities the proposed method can isolate the sound of individual
speakers in extremely low-SNR scenarios.

In future work, we will extend the proposed method to cope
with flying MAVs with the additional challenge introduced by the
movement of the camera and the microphones.
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