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Abstract In this paper, we address one of the most typical
problems of person detection: scenarios with the presence
of groups of persons. In this kind of scenarios, traditional
person detectors have difficulties as they have to deal with
several simultaneous occlusions. In order to try to solve this
problem,we propose the use of two different hierarchies. The
first one consists of a hierarchy of persons, i.e., the use of the
detection of different persons belonging to a group in order to
refine the individual’s detections. The second one consists of
a hierarchy of parts, i.e., the use of different combinations of
bodyparts in order to refine thefinal detections. Experimental
results over several video sequences show that the proposed
hierarchies significantly improve the results with respect to
different approaches from the state of the art.

Keywords Person detection · Hierarchy of persons
in groups (HPG) · Hierarchy of body parts (HBP) ·
Hierarchical detector in groups (HDG)

1 Introduction

The detection of persons in video sequences is one of the
most difficult and interesting challenges that we have to deal
with in video analysis tasks. The main issue lies in the com-
plexity for modeling persons due to their great variability
in physical appearance, poses, movements and interactions
with other persons and objects. This complexity grows in
real-world settings, such as shopping malls, streets, railway
stations, etc., since there are large groups of persons and
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many occlusions among them. In the method proposed in
this paper, named hierarchical detector in groups (HDG), we
use an individual person detector from the state of the art
but enhanced with two new hierarchical structures both for
the number of persons in the group and structures of body
parts that constitute each person. Consequently, our method
provides greater extensibility without requiring any specific
group model training.

A canonical person detection approach from the state of
the art [7] can be divided into three main stages. The first
stage is in charge of the extraction of initial hypotheses or
candidates to be a person, usually addressed via background
subtraction, a simple and powerful technique but with signif-
icant limitations in complex (e.g., crowded) scenarios. Other
techniques such as exhaustive search are more robust to rota-
tion, scale changes and variety of poses, even in complex
environments, but they add complexity and increase the prob-
ability of false-positive detections, besides being rather more
computationally expensive. The second stage deals with the
matching, evaluating the similarity between the initial candi-
dates and a model designed and trained according to certain
key parameters such as movement, size, shape, etc. Finally,
the classification or verification stage decides if the candi-
dates correspond or not to a person.

Starting from the individual person detector proposed by
Felzenszwalb et al. [3], we incorporate, following [9,16,17],
the idea of creating a hierarchy based on the physical location
of individuals or different objects in order to associate them
in pairs, triplets or larger groups. From [5], we also consider
different combinations of parts and let them not to score in
the center of the person but at any point which may suit bet-
ter. From [6], we have used the idea of considering different
body parts configurations, but we have included an additional
hierarchy of body parts taking into account not only different
body parts configurations but also the relationships between
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the occluding and occluded body parts between different
persons.

Some works such as [1,12,13,19], propose the use of
tracking information in order to deal with the occlusion prob-
lems.Otherworks such as [8,11,14,18] aremore relatedwith
our work, as they try to find a solution to the problem of
detecting individuals located in crowded scenes with lack of
visibility of its parts. Nevertheless, in [11,14,18] the authors
try to solve this key issue by creating a model and, thus,
training it on the patterns formed when two persons are very
close, or even overlapping. On the other side, [8] requires
an individual person detector and a posterior global occlu-
sion optimization process without using any kind of group
structure reasoning. In our algorithm, we use the samemodel
of an individual as in [3], but we use hierarchical structures
both for the number of persons forming the group and body
parts that forms each person, without modifying the original
model. Consequently, our algorithm has wider and simpler
configuration settings that provide greater flexibility without
requiring any specific training on groups models because we
are able to define any kind of group. Therefore, while [8]
deals with crowds but without taking advantage of the group
structure and [11,14,18] only deal with couple detection, our
approach deals with any possible group configuration around
each person (pairs, triplets or larger groups) without any kind
of additional model training. We solve the problem in real
scenarios, where the range of possible different occlusions
is much bigger and, therefore, the complexity of the group
model and its training increase exponentially.

The rest of the paper keeps the following structure: in
Sect. 2, the modifications proposed over the base algorithm
are described; in Sect. 3, the evaluation of the proposed
approach is described; and finally, in Sect. 4 we summarize
the conclusions and the future work.

2 Hierarchical detector in groups (HDG)

The original detector [3] defines an individual person model.
We propose two new additional different hierarchies in order
to deal not only with individuals but also with groups of
persons. The approach has been split in several stages:
hierarchy of persons in groups, hierarchy of body parts, cal-
culation of confidence maps, bounding box detection and
post-processing.

2.1 Hierarchy of persons in groups (HPG)

The purpose of the first hierarchy is to improve the detection
of persons, who are hardly detected in the original algorithm
because they are hidden by the other person, using the infor-
mation of the least occluded person who defines the group.
This hierarchy is defined by two types of persons: the Main

Person (MP) and the Secondary Person (SP). The MP corre-
sponds to the original individual person model [3], i.e., the
least occluded person from which the rest of persons can be
detected. The SP corresponds to an additional person of the
group, partially occluded by the MP and/or another person
(included or not in this group). Each SPi is defined by the
relative position of each possible SPi , (i = 1 . . . , I ), in rela-
tion to theMP.We define this relative position or anchor-shift
with a two-dimensional vector (Δxi ,Δyi ). The objective of
using a hierarchy of persons is to gather all the pieces of
information about every pair who belongs to the group of
the MP in the geometric center of the MP. Thus, the per-
sons who are hardly detected can improve their scores when
using the information of other person who belongs to the
pair. The system is fully flexible: we could define any search
area of the SP. For example, following the state of the art
in “double-person” (or couples) detectors [14,18], we con-
sider possible occlusions even higher than 80%. After testing
different anchor-shifts configurations (see Sect. 3.1), in this
work, we have defined a set of anchor-shifts of nine positions
(I = 9) with |Δx | ≤ 6 and |Δy| ≤ 6 with step s = 6 (i.e.,
Δx = −6, 0,+6, Δy = −6, 0,+6 ). Therefore, we are able
to detect up to nine different kinds of pairs around each per-
son, the absence of displacement (Δx = Δy = 0) and the
eight neighbors (see Fig. 1). The anchor-shifts are placed in
the horizontal axis at −6 and +6, as these values correspond
to a displacement in which at least half body of the SP is
occluded by the MP (assuming a full body person model).
The anchor-shifts are placed in the vertical axis at−6 and+6,
as these values correspond to the size of the head/shoulders in
which at least eighty percent of the SP is occluded by theMP
(assuming a full body personmodel). From the above, a range
of search for SP from MP is defined that can be observed in
Fig. 1. We also take into consideration the absence of dis-
placement, or anchor-shift (Δx = Δy = 0), to recognize
a person who does not belong to any pair, i.e., the absence
of a Secondary Person and therefore a single person or the
original detector [3].

2.2 Hierarchy of body parts (HBP)

This extension tries to use the most relevant body parts of
persons in presence of groups. Consequently, we have devel-
oped another hierarchy in relation to the person body parts
configuration. The system is completely configurable: any
combination is possible among all the possible ones that
a person model of N parts allows. Following the previous
assumption that the SP is more occluded than the MP, we
have decided to use different sets of body parts for the MP
and the SP.We have created five different settings for theMP
wherewe discard the lower parts progressively, since they are
the most occluded in presence of groups. All configurations
use the original root body part both on theMP and the SP (see
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Fig. 1 Visual examples of MP and nine possible positions of the
SPi , (i = 1, . . . , I ). The figure only shows eight examples of SPi :
from (−6, 6) to (6,−6). The (0, 0) position corresponds to a single
person, the MP

Fig. 2 Visual examples of body part configurations

Fig. 2). In Fig. 2, we can also see the five-model configuration
used for the MP. In particular, the original detector corre-
sponds to the use of only the first configuration, named “11”
[3]. On the other hand, for each SPi we use the same five con-
figurations, but there are three variants which depend on the
corresponding horizontal anchor-shift (Δxi ,Δyi ): ifΔx > 0,
it corresponds to a horizontal shift to the right and assigns
a model of SP with the same combination of body parts as
the MP but only with the visible parts placed at the right side
of the longitudinal axis of the person; if Δx < 0, it corre-
sponds, consequently, to a SP with the visible parts placed
at the left side of the longitudinal axis; finally, if Δx = 0, it
corresponds to an only vertical displacement and it assigns
a model of SP with up to three body parts: head and (two)

shoulders parts. All different combinations of hierarchy of
body parts have been tested with similar global results in the
experimental dataset (see Sect. 3.2).

2.3 Calculation of confidence maps

Felzenszwalb et al. [3] scans exhaustively the entire image
at multiple scales, gathering all the scores obtained from the
N body parts and root (BPn) at the geometric center (x, y)
of the model for a given level or scale l, in a confidence map
C(x, y, l). Thus our MP follows the same process:

CMP (x, y, l) =
N∑

n=0

BPn(x, y, l) (1)

However, to implement the proposed hierarchy of persons
in groups and detect individuals who are part of the group,
the scores of the SP have to be redefined according with their
relative position with respect to theMP. In our system, a high
score indicates a high probability that the pixel corresponds
to a detection of a second person for certain level l and a
certain anchor-shift i . All the body parts, including the MP
and the SP ones, are accumulated on the geometric center of
the MP; therefore, each possible SPi score is accumulated in
the confidence map CSP(x, y, l, i):

CSP(x, y, l, i) =
N∑

n=0

BPn(x
′, y′, l) (2)

(x ′, y′) = (x + Δxi , y + Δyi ) (3)

where i indicate the anchor-shift displacement of the SP in
relation to the MP.

Since we have also introduced a hierarchy of body parts,
the scores of the MP and SP are obtained through two dif-
ferent configuration models (different sets of body parts)
and, therefore, their confidencemaps values present different
ranges and, thus, they cannot be directly combined. Fol-
lowing [6], we are able to estimate the probability density
function of each configuration model, normalize the corre-
sponding confidencemapsvalues C̃MP/SP (0 < C̃MP/SP < 1)
and, afterward, combine them. At this point, our algorithm
continues like the originalmethod. Calculating themaximum
of all confidence maps for each level, we will obtain a unique
map for each scale and anchor-shift score(x, y, l, i):

score(x, y, l, i) = C̃MP(x, y, l) + C̃SP(x, y, l, i) (4)

2.4 Bounding box detection

In our case, each final detection indicates that at least a pair
has been detected as part of the group and, consequently,
the point p(x, y, l, i) is the center pixel of the MP of the
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Table 1 HPG results over
sequence S1L1-1

Anchor-shift configuration A B C D E F

|Δx | ≤6 ≤6 ≤12 ≤12 ≤12 ≤12

|Δy| ≤6 ≤6 ≤6 ≤6 ≤12 ≤12

s 3 6 3 6 3 6

I 25 9 45 15 81 25

lHPG 0.729 0.726 0.728 0.726 0.726 0.725

Anchor-shift configurations include groups from 9 to 81 persons (I ) according to the maximum displacement
in each direction, max(|Δx |) and max(|Δy|) and the step s between two consecutive SPi

group. TheMPbounding box is generated following the orig-
inal algorithm, i.e., a bounding box is generated around the
detected center (x, y) with the corresponding re-scaled size
of the basic model at the detected scale l. Then, using the
bounding box of the MP as reference, we extrapolate the
bounding box of each SPi according to the detected anchor-
shift i .

2.5 Post-processing

Felzenszwalb et al. [3] avoidsmultiple detections of the same
person using a non-maximum suppression (NMS) process:
bounding boxes with an overlap higher than 50% are deleted,
remaining only the one with higher score. It has been nec-
essary to modify the NMS process, as with the original one
we could lose most of the detections, taking into account
that in this kind of videos persons are very close and the
overlap is often greater than 50%. Again, according to the
state of the art in “double-person” (or couples) detectors
[14,18], we consider possible occlusions even higher than
80%. Therefore, we have divided the NMS process in two
stages: firstly, we delete all the detections in which the head
is minimally overlapped (more than 0%). Therefore, if we
have two overlapped head detections, it is because they are
probably two detections of the same person. Afterward, we
perform the normalNMSprocess but allowing a greater over-
lapping than in the original algorithm. During the algorithm
design process, we found out that the tolerance value with
good performance is around 90% of overlapping. Any pos-
sible overlapping between 50 and 99% has been tested with
similar global results (see Sect. 3.3).

3 Evaluation

We evaluate our approach on 10 challenging, publicly avail-
able video sequences with a ground truth [13] that includes
all detections, even when persons are strongly occluded. The
first 8 sequences: S1L1 (1 and 2), S1L2 (1 and 2), S2L1,
S2L2, S2L3 and S3MF1, are from the PETS2009 database
[4] and the last 2 sequences: Campus and Crossing, are from
the TUD database [1]. Note that the PETS scenarios include

Fig. 3 Precision–Recall curves of S1L1-1 sequence using different
anchor-shifts configurations

higher complexity in terms of number of persons and occlu-
sions than the TUD dataset, which is traditionally used for
couple detection [14,18]. Following the experimental evalu-
ation of [6], we classify the sequences according to the degree
of occupation of the scene (low, medium or high). The eval-
uation metrics are the Precision–Recall curves and the area
under the curve (AUC-PR), which is used to condense the
algorithm performance in a single value.

Firstly, we present exhaustive results of each stage of the
approach (HPG,HBPandpost-processing) over the sequence
S1L1-1 (medium complexity). After that, we present the final
results and a comparison with the state of the art.

3.1 Hierarchy of persons in groups (HPG)

In this section, we evaluate the first stage of the proposed
approach, HPG, analyzing the results using different anchor-
shifts configurations. The HBP and post-processing settings
have been fixed as the final approach (HBP with configu-
rations 12, 13 and 14, post-processing of 90% NMS); in
particular, according to the maximum displacement in each
direction, max(|Δx |) and max(|Δy|) and the step s between
two consecutive SPi . In Table 1 and Fig. 3, we can see
six of the most representative anchor-shift configurations
(named from A to F), including groups from 9 to 81 mem-
bers. In general, the results show similar performance around
0.72–0.73AUC. For efficiency and performance reasons, the
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Table 2 HBP results over
sequence S1L1-1

Configuration 11 12 13 14 15 11–15 12–14 12,13 12,14 13,14

HBP 0.690 0.725 0.727 0.729 0.684 0.719 0.726 0.725 0.727 0.728

All the single body parts configuration versions and five of the most representative combinations of them

Fig. 4 Precision–Recall curves of S1L1-1 sequence using different
body parts configurations from A to F

selected default setting corresponds to configuration B, pre-
viously described in Sect. 2.1, i.e., I = 9 with |Δx | ≤ 6 and
|Δy| ≤ 6 with step s = 6 (see Fig. 1).

3.2 Hierarchy of body parts (HBP)

In this section, we evaluate the second stage of the proposed
approach, HBP. The HPG and post-processing settings have
been fixed as the default setting (HPG with I = 9; |Δx | ≤ 6
and |Δy| ≤ 6 with step s = 6, post-processing of 90%
NMS). We present the results using different body parts con-
figurations, from the single configuration versions 11, 12, 13,
14 and 15 to five of the most representative combinations of
them. In Table 2, we can see the results for each configura-
tion. In general, the results show similar performance around
0.68–0.73AUC. In particular, in Fig. 4 we can see how the
use of any combination including the configurations 12 or 14
and not 11, has almost the same performance. The selected
default setting is a HBP with configurations 12, 13 and 14.

3.3 Post-processing

In this section, we evaluate the last stage of the proposed
approach, the post-processing or non-maximum suppression
overlap criteria. The HGP and HBP settings have been fixed
to default configuration (HPG with I = 9; |Δx | ≤ 6 and

Fig. 5 Precision–Recall curves of S1L1-1 sequence using different
non-maximum suppression overlap criteria

|Δy| ≤ 6 with step s = 6, HBP with all configurations
11, 12, 13, 14 and 15). In Table 3 and Fig. 5, we can see
eleven different non-maximum suppression overlap criteria
(from 50 to 99% allowed overlap). Our approach HDG has
been designed in order to support occlusions even higher
than 80%. In general, the results show similar performance
but in particular any overlap higher than 80% shows almost
the same performance around 0.71–0.72AUC. The selected
default value for the non-maximum suppression overlap cri-
teria is 90%.

3.4 Hierarchical detector in groups (HDG)

We have compared the HDG results with 7 person detectors
from the state of the art: the original discriminatively trained
deformable part-based detector (DTDP) [3], the aggregate
channel features (ACF, Inria and Caltech variations) [2], the
implicit shapemodel (ISM) [10], amulti-configurations body
part variation of the DTDP in order to deal with groups
(MC-DTDP) [6], the faster regions with convolutional neural
network version (FRCNN) [15] and the human detection in
dense crowds (HDDC) [8].

Firstly, in order to quantify which part of the improve-
ments have been obtained due to hierarchy of persons in
groups and which by the hierarchy of body parts, we have
compared the original DTDP and the proposed hierarchy of

Table 3 HDG results with different non-maximum suppression overlap criteria (from 50 to 99% overlap) over sequence S1L1-1

NMS 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99

HDG 0.677 0.686 0.696 0.702 0.708 0.712 0.716 0.718 0.719 0.719 0.718
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Table 4 Comparative results
for each hierarchy versus
original detector

Sequence Complexity DTDP [3] HBP HDG %Δ1 %Δ2 %Δ1 − %Δ2

S1L1-1 Medium 0.628 0.685 0.726 15.6 9.1 6.5

S1L1-2 Medium 0.734 0.816 0.848 15.5 11.2 4.3

S1L2-1 High 0.479 0.568 0.679 41.8 18.6 23.2

S1L2-2 High 0.494 0.598 0.653 32.2 21.1 11.1

S2L1 Low 0.934 0.951 0.949 1.6 1.8 −0.2

S2L2 Medium 0.664 0.764 0.809 21.8 15.1 6.7

S2L3 High 0.558 0.661 0.738 32.3 18.5 13.8

S3MF1 Low 0.930 0.942 0.942 1.3 1.3 0.0

Campus Low 0.765 0.759 0.791 3.4 −0.8 4.2

Crossing Low 0.854 0.854 0.855 0.1 0.0 0.1

Average 0.704 0.760 0.799 16.6 9.6 7.0

The best results in each sequence are in bold. Percentage increase HDG versus DTDP (%Δ1). Percentage
increase HBP versus DTDP (%Δ2)

Table 5 State-of-the-art person detection performance

Sequence DTDP [3] ACF [2] ISM [10] MC-DTDP [6] FRCNN [15] HDDC [8] HDG %Δ3

Inria Caltech

S1L1-1 0.628 0.640 0.648 0.453 0.660 0.607 0.645 0.726 10.0

S1L1-2 0.734 0.686 0.823 0.491 0.794 0.714 0.740 0.848 3.0

S1L2-1 0.479 0.447 0.553 0.296 0.560 0.512 0.566 0.679 20.0

S1L2-2 0.494 0.519 0.580 0.359 0.568 0.546 0.575 0.653 12.6

S2L1 0.934 0.858 0.932 0.779 0.949 0.931 0.910 0.949 0.0

S2L2 0.664 0.582 0.741 0.552 0.745 0.751 0.717 0.809 7.7

S2L3 0.558 0.478 0.601 0.340 0.615 0.568 0.603 0.738 20.0

S3MF1 0.930 0.944 0.940 0.820 0.949 0.968 0.907 0.942 −2.7

Campus 0.765 0.809 0.751 0.761 0.761 0.811 0.759 0.791 −2.5

Crossing 0.854 0.880 0.834 0.843 0.854 0.816 0.823 0.855 −2.8

Average 0.704 0.684 0.740 0.569 0.746 0.722 0.725 0.799 6.6

Percentage increase HDG versus the best individual detector results in each sequence %Δ3. The best results in each sequence are in bold

Fig. 6 Visual example of true positive detections (green color) and false detections (red color): a original DTDP detector [3] and b HDG detector
(color figure online)

body parts (only HBP with configurations 12, 13 and 14)
versus the final HDG results. Thus, we obtain the increase
percentage due to each hierarchy. As the results show in

Table 4, in general, the hierarchy of body parts (9.6% average
increase,%Δ2) ismore relevant than the hierarchy of persons
in groups (7.0% average increase, %Δ1−%Δ2), although in

123



SIViP (2017) 11:1181–1188 1187

Fig. 7 Precision–Recall curves from three sequences which have
different complexity: a PETS2009-S2L1—low, b PETS2009-S2L2—
medium and c PETS2009-S2L3—high

the most complex videos the hierarchy of persons in groups
has a greater importance, as this kind of scenes are its specific
target. In Table 5, we show the AUC of each of the seven
algorithms analyzed (Fig. 6). In more complex sequences,
like PETS2009-S1L2-1, PETS2009-S1L2-2 or PETS2009-
S2L3, the increase is in the range of 12− 20%. On the other
hand, in easier sequences like PETS2009-S2L1, PETS2009-
S3MF1, TUD-Campus and TUD-Crossing, we achieve a
smaller or even negative improvement. Our algorithm is
developed to improve the results in complex scenarios with
the presence of groups of persons, where there are large
occlusions, and therefore, when these circumstances do

not occur, the benefit is limited. Nevertheless, we would
like to underline that our algorithm always improves the
original performance (16.6% average increase, %Δ1). In
Fig. 7, we show the Precision–Recall curves from three
sequences which have different complexity (low, medium
and high, respectively): PETS2009-S2L1, PETS2009-S2L2
and PETS2009-S2L3. In Fig. 6, we show examples of true
positive detections (green color) and false detections (red
color) of the original DTDP and our HDG detector. Both
results have been obtained for the samedetection score;while
the original detector is only able to detect a few persons with
partial occlusions, our HDG detector is able to detect many
persons with partial occlusions in presence of groups.

4 Conclusions and future work

Our main goal consists of detecting the occluded persons in
groups who are usually not detected. To achieve this goal,
we have proposed a hierarchy of persons in groups, where
the detection of the most visible person could help to detect
the occluded ones, and a hierarchy of body parts, which main
principle is to use the body parts with most useful informa-
tion. The algorithm has been evaluated and compared with
the state of the art. The results show how our approach has
the best results in videos with a higher density of persons
or complexity, where there are strong occlusions. In easier
sequences, we have also achieved a slight improvement over
the original approach. The proposed approach is flexible: we
could set the number of persons who conform a group, defin-
ing different anchor-shifts, and we could set the body parts
which form a person. Therefore, as futurework,wewill study
the behavior of the hierarchy on larger groups of persons,
evaluating exhaustively the different anchor-shift ranges and
steps. In relation to the hierarchy of body parts, we would
like to study other body parts configurations or even to use
the personmodel without root in the SP, since in the presence
of strong occlusions it could be counterproductive.
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