
CONFIDENCE INTERVALS FOR TRACKING PERFORMANCE SCORES

Ricardo Sanchez-Matilla and Andrea Cavallaro

Centre for Intelligent Sensing, Queen Mary University of London, UK
{ricardo.sanchezmatilla, a.cavallaro}@qmul.ac.uk

ABSTRACT

The objective evaluation of trackers quantifies the discrep-
ancy between tracking results and a manually annotated
ground truth. As generating ground truth for a video dataset is
tedious and time-consuming, often only keyframes are man-
ually annotated. The annotation between these keyframes
is then obtained semi-automatically, for example with linear
interpolation. This approximation has two main undesirable
consequences: first, interpolated annotations may drift from
the actual object, especially with moving cameras; second,
trackers that use linear prediction or regularize trajectories
with linear interpolation unfairly gain a higher tracking eval-
uation score. This problem may become even more important
when semi-automatically annotated datasets are used to train
machine learning modules. To account for these annotation
inaccuracies for a given dataset, we identify objects whose
annotations are interpolated and propose a simple method
that analyzes existing annotations and produces a confidence
interval to complement tracking scores. These confidence in-
tervals quantify the uncertainty in the annotation and allow us
to appropriately interpret the ranking of trackers with respect
to the chosen tracking performance score.

Index Terms— Tracking performance scores, ground
truth, annotation quality.

1. INTRODUCTION

The objective evaluation of tracking results helps to identify
the strengths and weaknesses of an algorithm and should en-
able fair comparisons across trackers. The evaluation often
relies on measuring the discrepancy between results and a
manually set of annotations, known as ground truth (GT).
The most common GT annotation consists of bounding rect-
angles approximating the location and shape of objects. The
GT should be produced by multiple annotators and a consoli-
dated GT should be generated after an analysis and correction
of their annotations [1]. However, this process is tedious and
time-consuming as datasets typically consist of hundreds of
thousands annotations (e.g. 300K annotations in the multiple
object tracking benchmark 2016, MOTB16 [2]). The anno-
tation task may become impractical for large-scale datasets
with millions of object trajectories to be annotated [3].

The GT annotation process can be sped up with semi-
automatic or interactive methods. Semi-automatic methods
allow the annotator to reduce the number of frames to be man-
ually annotated and generate the missing annotations using
linear interpolation [4, 5], tracking [1, 6], learning [1, 4, 7] or
optimization [1] methods. A commonly used semi-automatic
approach is 2D linear interpolation [1, 4, 5]. Keyframes to be
manually annotated are selected by the annotator or at fixed
intervals [1]. Videos can also be annotated from a sparse set of
keyframe annotations by training an appearance-based detec-
tor using a convex temporal regularization [7]. More accurate
annotations can be achieved by modeling linear interpolation
in 3D and by performing image stabilization to compensate
for camera motion [8]. Interactive methods enable a user
to manually correct the annotation automatically generated
through semi-automatic methods, after manual annotation of
each object in one or multiple frames [4, 6]. For example,
tracking and user interaction can be combined by allowing a
user to reinitialize the annotation procedure when the tracker
fails [6]. Table 1 summarizes the main semi-automatic tools
to generate GT annotations.

The process used to generate the GT annotation for pub-
licly available multi-target tracking datasets is shown in Ta-
ble 2. CAVIAR [9] is the only dataset that provides a GT man-
ually annotated frame-by-frame. PETS2009 [10], ETH [11],
TUD [12, 13] and i-LIDS [14] include linearly interpolated
annotation [15]. MOTB15 [16] has a combination of existing
annotations for five videos (some manually annotated in full,
some with linearly interpolated GT and others with an un-
known annotation policy) and new annotations for six other
videos generated using VATIC [1]. MOTB16 [2] uses a pri-
vate annotation tool and rules that are not publicly disclosed.
Therefore, we aim to identify which frames and objects were
interpolated during the annotation process.

In this paper, we empirically estimate the bias in perfor-
mance scores caused by the use of semi-automatic ground-
truth annotation. This type of annotation introduces system-
atic errors that favor trackers with strategies for prediction or
regularization that are similar to those used to generate the an-
notation. In particular, we analyze the effect of linear interpo-
lation for GT annotation and show that these errors are larger
with moving cameras, which are becoming increasingly pop-
ular. To address this problem, we first identify interpolated



Table 1: Annotation tools and their interpolation tech-
nique(s). Key – ViPER: Video Performance Evaluation Re-
source; KATRA: Keyframe-based Tracking for Rotoscop-
ing and Animation; VATIC: Video Annotation Tool from
Irvine, California; iVAT: interactive Video Annotation Tool;
2DL: 2D Linear interpolation; 3DL: 3D Linear interpolation;
Track: Tracking; Learn: Learning; Opt: Optimization; ACM:
Accounts for Camera Motion.

Ref Annotation
tool

Semi-automatic annotation procedure ACM2DL 3DL Track Learn Opt
[5] ViPER X
[6] KATRA X
[8] LabelMe X X
[7] FlowBoost X
[1] VATIC X X X X
[4] iVAT X X

Table 2: Datasets for multi-object tracking and their annota-
tion. Key – *, ’ADL-Rundle-’ and ’Venice-’ annotation gen-
erated with linear interpolation with VATIC [1]; **: annota-
tion generated with linear interpolation by [15]; MT: Mechan-
ical Turk; KF: keyframe based; LI: linear interpolation; NA:
not available.

Ref Dataset Tool KF LI
[9] CAVIAR CaviarGui
[12] TUD** NA X X
[11] ETH** NA X X
[10] PETS2009** NA X X
[17] KITTI MT NA NA
[14] i-LIDS ViPER X X
[16] MOTB15* VATIC NA X
[2] MOTB16 NA NA X

annotations and then quantify their effect in a performance
score by encoding the corresponding uncertainty in a confi-
dence interval. This confidence interval is used to comple-
ment existing tracking evaluation scores for a given annotated
dataset.

We evaluate the impact of the proposed confidence inter-
vals in the ranking for MOTB16 [2], the most commonly used
multiple object tracking benchmark.

2. CONFIDENCE INTERVAL

Let Z = {zλk : λ = 1 . . .Λ; k = 0 . . .Kλ − 1} be the GT an-
notation for a generic dataset with Λ object trajectories, each
Kλ frames long. Let an annotated object with identity λ at
frame k be defined as

zλk = (u, v, w, h), (1)

where (u, v) is the top-left corner, and w and h are width and
height of the bounding box. Z may contain manual and inter-
polated annotations, and can be decomposed as Z = Z̃ ∪ Ẑ,
with Z̃∩Ẑ = ∅, where Z̃ = {z̃λk} contains manually annotated

objects and Ẑ = {ẑλk} contains automatically generated an-
notations, created for example through interpolation. If all the
annotations are produced manually, then Ẑ = ∅ and Z = Z̃.
We term Z̃ manual ground truth (MGT) and Ẑ interpolated
ground truth (IGT).

Let us assume that linear interpolation was used to gen-
erate Z for a dataset. Our aim is to identify the elements of
Z̃ =

⋃Λ
λ=1 Z̃λ. These elements are likely to have non-zero

acceleration for all the components of the state:

Z̃λ =
{
zλk : zuu, zvv, zww, zhh 6= 0 :

k = 0 . . . K̃λ − 1
}
, (2)

where zii is the second partial derivative (i.e. acceleration) of
component i, and K̃λ = |Z̃λ| ≤ Kλ is the cardinality of Z̃λ.

From the identified Z̃λ we generate interpolated versions,
Zλβ , with different decimation factors, β ≥ 2, through a
decimation-interpolation procedure:

Zλβ =
{
zλk,β = z̃λiβ + j∆λ

i : k = 0 . . . K̃λ − 1;

i = 0 . . .

⌊
K̃λ

β
− 1

⌋
; j = 0 . . . β − 1

}
, (3)

where ∆λ
i =

z̃λ(i+1)β−z̃
λ
iβ

β and λ ∈ {1 . . .Λ}. Note that Zλβ is
composed of manual annotations (when j = 0) and linearly
interpolated annotations (when j 6= 0); and its cardinality is
equal to that of Z̃λ, i.e. |Zλβ | = |Z̃λ| = K̃λ.

To empirically estimate the uncertainty introduced by Zλβ
when evaluating tracking results, we consider a generic track-
ing performance measure, s(·, ·), which allows us to compare
Zλβ against its corresponding Z̃λ as:

αs,β =
1

Λ

Λ∑
λ=1

s(Z̃λ,Zλβ). (4)

The value of αs,β allows us to define the confidence inter-
val for s(·, ·): a tracker with the same tracking results as a
Zλβ should subtract (up to) αs,β to the final score; whereas a
tracker with the same tracking results as a given MGT should
add (up to) αs,β to the final score, if it is assessed using Zλβ .

To apply the confidence interval on the performance
scores for a specific dataset, we map αs,β to the amount of
interpolation detected in the dataset.

As an example, let us quantify the amount of linearly
interpolated annotations in MOTB15 [16] and MOTB16 [2].
Using the definition in Eq. 2, the MOTB16 training dataset
results in having 39.7% of linearly interpolation annotations
(Table 3). This approximatively corresponds to a decimation
factor of β = 3. We assume that the test dataset and the
training dataset have a similar amount of linearly interpo-
lated annotations, as the same annotation policy was used



Table 3: Percentage of linearly interpolated annotations de-
tected in the MOTB15 and MOTB16 datasets using Eq. 2.

Camera motion MOTB15 MOTB16
Static 6.2 52.7

Moving 17.0 12.7
Overall 11.0 39.7

(a) (b) (c)

(d) (e) (f)

Fig. 1: Comparison of manually annotated GT (red rectan-
gle), interpolated generated GT with β = 15 (blue), and
MOTB GT (green) for object 32 of MOT16-02 (static camera)
at frames 331, 338 and 352 (a-c) and for object 4 of MOT16-
10 (moving camera) at frames 1, 8 and 12 (d-f).

for both datasets [2]. MOTB16 uses three times more inter-
polation than MOTB15. In MOTB16, static-camera videos
have a higher percentage of interpolated annotations than
moving-camera videos. Surprisingly, in MOTB15 moving-
camera videos have a higher percentage of interpolated GT
annotation than static-camera videos.

To visualize the GT drifts caused by interpolation, we an-
notated frame-by-frame object 32 in MOT16-02 (static cam-
era) and object 4 in MOT16-10 (moving camera), totaling
685 annotations. We refer to these annotations as ideal GT.
Fig. 1 shows object 32 of MOT16-02 (top) and object 4 of
MOT16-10 (bottom), and compares the MGT (red) against
its decimated version, Zλβ , with decimation factor β = 15
(blue) and the GT provided with the dataset (green), MOTB
GT. The more noticeable drift occurs when the camera moves
(Fig. 1(e-f)).

We quantify the overlap that the ideal GT produces
against its interpolated versions and MOTB GT. We calculate
the overlap between a manual annotation, z̃λk , and zλk,β , as:

ωλk =
z̃λk∩z

λ
k,β

z̃λk∪z
λ
k,β

.

The effect of different interpolated GT versions on track-
ing evaluation scores is shown in Fig. 2. In the static-camera
example (Fig. 2(a-b)), the overlap decreases moderately up to
0.5 (i.e. 50%). In the moving-camera example (Fig. 2(c-d)),
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Fig. 2: Comparison of overlaps between GTs for MOT16-
02 static-camera video (top row) and for MOT16-10 moving-
camera video (bottom row). Left column: overlap between
ideal GT and MOTB GT. Right column: overlap between
MGT and its interpolated generated version (β = 15).

the overlap decreases up to having frames with no overlap
between interpolated GT versions and the ideal GT.

3. IMPACT ON RANKING

In this section, we analyze the impact of the interpolated
GT on the ranking of trackers in a specific benchmark,
MOTB16 [2]. In order to account for the uncertainty in-
troduced by the interpolated annotation for a given dataset,
we define confidence intervals to complement performance
scores.

We first identify frames and objects for which no in-
terpolation is used in the publicly available GT, Z, thus
generating Z̃. Then, we generate multiple interpolated ver-
sions, Ẑβ =

⋃Λ
λ=1 Ẑλβ , with different decimation factors,

β ∈ {3, 6, 9, 12}. Finally, we compare each Zλβ against the
MGT, Z̃, using the specific performance scores to define the
confidence intervals to be applied to each score (Eq. 4).

We select Multiple Object Tracking Accuracy (MOTA)
and Multiple Object Tracking Precision (MOTP) as perfor-
mance scores [18]. MOTA for object λ is defined as

MOTAλ = 1− 1

K̃λ

K̃λ−1∑
k=0

(FNλ
k + FPλk + IDSWλ

k ), (5)

where FNλ
k , FPλk and IDSWλ

k are the number of false neg-
atives, false positives and identity switches for the object λ at
frame k. MOTP for object λ is defined as

MOTPλ =
1

K̃ ′λ

K̃′
λ−1∑
k=0

z̃λk ∩ zλk,β
z̃λk ∪ zλk,β

, (6)



Table 4: Evaluation tracking score with a GT annotated
frame-by-frame (ideal GT) against its interpolated generated
GT, Zλβ , with decimation factor (β = 15), and the MOTB GT
annotation.

Camera motion Sequence GT MOTA MOTP

Static MOT16-02-id32 Zλ=32
β=15 100 85.70

MOTB 100 76.91

Moving MOT16-10-id4 Zλ=4
β=15 72.00 69.23

MOTB 97.33 70.36

Table 5: Uncertainties in MOTA and MOTP for MOTB16
produced by different decimation factors (β).

β MOTA confidence MOTP confidence
3 0.22 3.14
6 0.56 8.68
9 3.74 13.41
12 11.27 17.05

where K̃ ′λ is the number of frames with overlap over 0.5.
For MOTA we define: s(·, ·) = 100 −MOTAλ. Like-

wise for MOTP.
Table 4 shows that in the static-camera example (object 32

in MOT16-02) both interpolated versions obtain full MOTA,
whereas MOTP considerably decreases due to interpolation,
due to its direct relation with the overlap. In the moving-
camera example (object 4 of MOT16-10) MOTA and MOTP
differ from the ideal result. For example, when object 4 of
MOT16-10 is evaluated with the ideal GT obtains a MOTA of
72 (second-last row in Table 4). This means that no tracker
with MOTA results closer than 28 (= 100 − 72) to another
tracker can be confidently said to outperform the other based
on MOTA.

Table 5 shows how the confidence on the performance
score varies with different decimation factors, β. In order to
characterize MOTA and MOTP through the overlap only, we
assume for simplicity that IDSWλ = 0, ∀λ for all trackers.

To conclude, let us consider the TOP-15 trackers sorted by
MOTA that use public detections on the MOTB16 test dataset.
For this dataset, the estimated MOTA uncertainty is 0.22 and
MOTP uncertainty is 3.14 (first row Table 5). These values of
αs,β for the two scores allow us to analyze the impact of the
public GT annotation of MOTB16.

Fig. 3(a-b) shows MOTA and MOTP results obtained
for each tracker1, whereas Fig. 3(c-d) shows the ranking of
trackers based on MOTA and MOTP. The estimated MOTA
and MOTP confidence intervals are shown as bars. Note that
MOTP is very sensitive to GT interpolation as small overlap
variations influence the measure (Eq. 6). MOTA is instead
less sensitive as it depends on the number of false positives
and false negatives, which vary only when the overlap be-
comes smaller than 50%.

1https://motchallenge.net/results/MOT16/ Last ac-
cessed on 9th February 2018.
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Fig. 3: TOP-15 performing trackers using public detections in
MOTB16 according to MOTA measure. Red crosses indicate
the MOTB Challenge measure (top row) and rank (bottom
row). Blue bars translate the confidence interval (top row)
into the ranking uncertainty (bottom row).

In summary, no TOP-15 tracker can be confidently as-
signed to a specific rank in the MOTB16 benchmark, as
neighboring trackers are within their MOTA uncertainty
ranges. Moreover, there is no significant difference among
any of the TOP-15 trackers in terms of MOTP, i.e. even the
first and fifteenth tracker cannot be confidently ranked relative
to each other in terms of MOTP.

4. CONCLUSION

We quantified the bias caused by ground-truth generated
semi-automatically with linear interpolation, which may un-
deservedly benefit trackers that use or learn to use linear pre-
diction or regularization models. We showed that this prob-
lem is particularly acute with moving cameras. To account
for this uncertainty when comparing trackers, we calculate a
confidence interval for a given evaluation score and dataset
using only information extracted from the GT annotation.
We hope that this simple solution, which does not require
further annotations, will help to produce more meaningful
comparisons when evaluating and ranking trackers.

Future work includes to define confidence intervals for
other types of interpolated annotations, such as those that
make use of tracking, learning, or optimization; and for other
applications such as training deep neural networks on large-
scale datasets annotated semi-automatically.
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