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ABSTRACT

Predicting the motion of objects despite the presence of camera mo-
tion is important for first-person vision tasks. In this paper, we
present an accurate model to forecast the location of moving ob-
jects by disentangling global and object motion without the need of
camera calibration information or planarity assumptions. The pro-
posed predictor uses past observations to model online the motion
of objects by selectively tracking a spatially balanced distribution
of keypoints and estimating scene transformations between frame
pairs. We show that we can forecast up to 60% more accurately
than state-of-the-art alternatives while being resilient to noisy obser-
vations. Moreover, the proposed predictor is robust to frame rate
reductions and outperforms alternative approaches while processing
only 33% of frames when the camera moves. We also show the ben-
efit of integrating the proposed predictor in a multi-object tracker.

Index Terms— Motion model; Prediction model; Moving cam-
eras

1. INTRODUCTION

Motion predictors model the dynamics of objects to estimate, on the
image plane or in 3D, their future location. Predictors are designed
for static [1, 2] or moving cameras [3, 4], may need camera cali-
bration [5, 6] or to assume that objects move on a common ground
plane [7]. Table 1 compares predictors and groups them in two main
classes, namely data driven or model based.

Data-driven predictors learn patterns from (large amounts of)
training data using machine learning [1, 2, 8, 9]. A clustering-based
method can be used to predict the motion pattern of a person in
a structured environment [1]. A long short-term memory (LSTM)
can predict the location and scale of objects [9], whereas multiple
LSTMs can be used to learn the object-to-object interactions to pre-
dict the future location of people [2, 8].

Model-based predictors [10, 11, 12] have either no assumptions
on object motion [13] or assume that objects maintain a certain ve-
locity learned over recent observations [14, 15, 16]. First or higher
order Markov models can be used to model motion [10, 16] and
an independent noise component can account for velocity variations
(i.e. accelerations) [14, 15]. Acceleration and noise can be mod-
elled based on camera-object distance [17, 18], frame rate [17, 18],
or physics [5]. Moreover, non-linear motion patterns can be learned
online with a hierarchical association of tracklets [11].

The above predictors are applicable to static cameras only,
whereas other model-based approaches account for both object and
global camera motion [3, 4, 5, 6, 7]. The object motion corresponds
to the observed motion of an object on the image plane when the
camera is stationary. The global motion corresponds to the observed
motion of an object on the image plane when, in the 3D world,

the object is stationary and the camera moves. Global motion in-
formation is extracted from the coherent motion of the background
when moving objects can be considered outlier motions, e.g. they
move on a common plane that is related across frames by a homog-
raphy [3, 4, 5, 7], which models rotation, zoom, any motion with
respect to a planar surface and any combination of these. Model-
based predictors for moving cameras use transformations among
ground planes between consecutive frames that update over time [5]
or 3D models to account for interacting objects using global and ob-
ject motion, geometrical constraints and a reversible jump Markov
chain Monte Carlo particle filter [6].

The camera pose may also be an important constraint for pre-
dictors as some methods are applicable only when the scene is seen
by a top-down looking camera mounted on a drone and thus can be
considered planar [3, 4, 7]. This assumption simplifies the explicit
decoupling of camera and object motion by first estimating a frame-
by-frame transformation (e.g. homography or registration) between
planes and then subtracting the camera motion from the observed
motion. Methods and dataset (e.g. a trajectory Forecasting Bench-
mark [19]) often account only for static cameras or from top-down
view cameras on high-altitude stationary drones and are therefore
limited methods to very specific scenarios.

In this paper, we propose a real-time object predictor that dis-
entangles the motion of objects from that of an uncalibrated camera
that moves at ground-level, a typical scenario for first-person vision
and autonomous robots. The proposed model accurately predicts the
location of objects without assuming that they move on a common
plane. We remove the typical planarity constraint by approximat-
ing the observed camera motion on the image plane with a rotation
across frames. The proposed predictor is resilient to local motions
and low frame rate videos. Experiments show that the proposed pre-
diction model outperforms alternative approaches by 60% in accu-
racy when predicting 30 frames with moving cameras. We also vali-
date our predictor in a multi-object tracker and show an improvement
of 3.6 accuracy points in moving-camera scenarios.

2. PREDICTION MODEL

Let Ik be a frame at time k and xk = (u, v, 1) be the position, in
homogeneous coordinates, of an object on the image plane, where
u and v are the horizontal and vertical position of the center of the
object, respectively. Our goal is to determine x̃k+TF , the prediction
of xk+TF , where TF ≥ 1, given TP ≥ 2 past observations.

To facilitate the prediction of the object location, we decompose
the motion observed on the image plane seen from a moving camera
into global and object motion. The global motion can be inferred
from the coherent motion of the background [4]. We propose GM,
an object motion predictor that models the global background mo-
tion between two frames, Ik−1 and Ik, with a homography, Hk|k−1,
assuming that between consecutive frames the global motion can be



Table 1. Object motion predictors. Key - Ref: reference; CS: coor-
dinate system; A: approach; L: linear; NL: non linear; CM: robust
to camera motion; FS: robust to frame skipping; NC: works without
camera calibration; NS: not scene specific; FO: objects can move
freely in the scene; Pro: proposed method.
Type Ref Strategy CS A CM FS NC NS FO

da
ta

dr
iv

en [1] learns typical motion patters using clustering 2D NL X X X
[2] accounts for person-to-person interactions with LSTMs 2D NL X X X
[8] accounts for person-to-person interactions and obstacles with LSTMs 2D NL X X X
[9] handles long-term occlusions with LSTM 2D NL X X X

m
od

el
ba

se
d

[10] probabilistic multimodal approach 2D NL X X X
[11] online learning for prediction of objects and groups of objects 2D NL X X X
[12] pedestrian trajectory prediction 2D NL X X X
[13] Brownian model 2D L X X X
[14] Markov Chain Monte Carlo data association 2D L X X X
[15] linear modelling with Gaussian noise 2D L X X X
[16] linear modelling with Gaussian noise 2D L X X X
[17] accounts for perspective and frame-rate 2D L X X X
[18] accounts for perspective and frame-rate 2D L X X X
[3] frame registration (aerial video) for camera motion estimation 2D L X X
[4] homography (aerial videos) camera motion estimation 2D L X X
[5] ground plane prediction (homography) for camera motion estimation 2D L X
[6] geometry priors (requires an RGB-D camera) for camera motion estimation 3D L X X X
[7] frame-registration (aerial videos) for camera motion estimation 2D L X X
Pro decouples apparent object and camera motion (homography) 2D L X X X X X

approximated with a camera rotation in first-person-view scenarios
(i.e. camera translation effects are negligible). For the prediction, we
approximate Hk+1|k ≈ Hk|k−1 assuming that the global motion be-
tween k and k+ 1 is similar to that between k− 1 and k. Therefore,
given xk, the position of an object in Ik, if the camera moves and the
object is static in the real world, the predicted position of the same
object in Ik+1 is

x̃k+1 =
1

αk
Hk|k−1 xk, (1)

where αk = 〈h3,x
λ
k〉 is a normalization factor; h3 is the third row

of Hk|k−1 and 〈·〉 is the dot product. To estimate Hk|k−1, we
selectively detect and track across frames keypoints on the back-
ground (see Fig. 1).

Let the set of keypoints detected in Ik−1 be

Pk−1 = {pnk−1 = (u, v)}, (2)

where u and v are the horizontal and vertical coordinates of keypoint
n on the image plane. We use as keypoint detector good features to
track [20]. The presence of moving objects, which are outlier mo-
tions with respect to the global motion estimation, is an important
aspect to model in first-person view. We apply a binary filtering
mask to discard keypoints on moving objects. We generate the bi-
nary mask by combining the results of a classifier that identifies the
bounding boxes of candidate moving objects of pre-defined classes
(i.e. people and cars) and extend each bounding box by a margin c
to account for inaccurate borders in the object detection results.

We then track the keypoints and localize them in Ik using a
sparse iterative version of the Lucas-Kanade optical flow in pyra-
mids [21]. Tracking generates two sets of matched keypoints: P′k−1

and P′k, with |P′k−1| = |P′k|where |·| is the cardinality of a set. Note
that some keypoints might be lost during tracking, |P′k−1| ≤ |Pk−1|.
The filtered set of correspondent keypoint pairs, P′′k−1 and P′′k , are
obtained after applying the mask filtering.

As the number of tracked keypoints decreases over time due
to occlusions, tracking errors and corresponding 3D points exiting
the field of view of the first-person-view camera, we keep a bal-
anced spatial distribution of keypoints [22] by dividing the frame
intoNu×Nv equally-sized cells and triggering a keypoint detection
process in cells with fewer thanNm keypoints. When a keypoint de-
tection process is triggered, new keypoints are detected, P(i,j)

k , only
outside the filtering mask; where i ∈ [1, Nu] and j ∈ [1, Nv] are the

KP filtering

 

Ik

KP detection Object
detection KP tracking

Homography
estimation

 

Ik−1

 

ℙk−1

⋃

KP filtering z
−1

 

ℙk

 

ℙ
″
k−1

 

ℙ
′
k

 

ℙ
′
k−1

 

ℙ
″
k

 

Hk|k−1
 

ℙ
∗

k

 

ℙ
‴
k

Text
Fig. 1. Block diagram of the proposed homography estimation
pipeline.

horizontal and vertical indices of the cells. The new set of detected
keypoints is P∗k =

⋃
∀i,j P

(i,j)
k , where

⋃
is the union operator.

We then compute the homography, Hk|k−1, with the filtered and
matched keypoints, P′′k−1 and P′′k , by calculating the transformation
that relates the position of the keypoints in these sets using random
sample consensus (RANSAC) [23, 24]. RANSAC generates the set
of inliers keypoints, P′′′k , by discarding matched keypoints that fol-
low a different (homography) transformation than the rest. Finally,
the newly detected keypoints, P∗k, are added to the set of inlier key-
points as Pk = P′′′k ∪ P∗k, which will be used for the next frame.

Then, the object motion over the past TP observed locations can
be estimated as

ẋk|k−TP+1 =
1

TP − 1

TP−2∑
i=0

(xk−i −Hk−i|k−i−1xk−i−1), (3)

and assuming that the motion of the object in the 3D world will be
similar in the near future, we can iteratively predict the object loca-
tion as

x̃k+1 =
1

αk
Hk|k−1xk + ẋk|k−TP+1. (4)

In the next section we validate the proposed predictor.

3. VALIDATION

We compare the proposed method, GM, with six other predictors,
we quantify the robustness to noisy observations and to frame rate
reduction, and the benefit of GM for object tracking.

The six other predictors we compare against are: a predictor
based on a Long Short-Term Memory (LSTM) [9]; two state-of-the-
art predictors based on x̃k+1 = xk + ẋk|k−TP+1, namely a linear
motion predictor (LP) [15] where

ẋk|k−TP+1 =
1

TP − 1

TP−2∑
i=0

(xk−i − xk−i−1), (5)

and an exponentially weighted motion predictor (EM) [10] where

ẋk|k−TP+1 =
1∑TP−2

i=0 (ρ)i

TP−2∑
i=0

(ρ)i(xk−i − xk−i−1), (6)

with ρ = 0.95; a linear regressor (LR) where x̃k+1 = mxk + b,
with m and b learned online for each object from its past locations;
a homography-based (SH) method [4] and, as reference, a static-
object prior-knowledge method (SP) with x̃k+1 = xk. In addition,



Table 2. Prediction error on moving-camera sequences (average and its standard deviation on the test dataset). Key – TP : number of past
observed locations; TF : number of future locations to predict; SP: static object prior knowledge; LP: linear prediction; EM: exponentially-
weighted prediction; LR: linear regressor; SH: simple homography-based predictor; GMG: proposed global motion with ground masking;
GM: proposed global motion prediction; *: at least an order of magnitude larger (and therefore not reported). The lower the number the better
the performance. Best and second best performing methods are shown in bold and italic, respectively.

TP TF SP LP EM LR LSTM SH GMG GM

2

1 7.3 (8.2) 2.1 (4.2) 2.1 (4.2) 2.1 (4.2) 6.1 (7.0) 2.8 * 2.2 (4.2) 2.2 (4.2)
10 35.0 (47.4) 13.7 (19.6) 13.7 (19.6) 13.7 (19.6) 27.3 (36.9) 69.9 * 16.0 (26.4) 13.0 (16.8)
20 60.3 (81.2) 31.2 (40.5) 31.2 (40.5) 31.2 (40.5) 47.4 (62.9) 194.6 * 31.0 (42.6) 25.1 (31.9)
30 80.5 (106.1) 50.7 (62.2) 50.7 (62.2) 50.7 (62.2) 64.8 (82.7) 292.7 * 46.1 (61.3) 37.5 (46.0)

10

1 7.2 (8.2) 2.8 (3.4) 2.7 (3.4) 5.2 (5.8) 5.3 (6.5) 10.9 * 3.5 (5.2) 2.9 (3.7)
10 35.0 (46.8) 15.4 (18.7) 14.9 (18.3) 17.6 (20.2) 25.0 (35.5) 55.4 * 11.5 (18.8) 9.5 (14.2)
20 59.9 (79.4) 32.0 (38.0) 31.3 (37.5) 34.1 (39.2) 44.0 (60.5) 140.3 * 19.2 (30.4) 16.0 (24.2)
30 79.4 (101.8) 49.7 (57.6) 49.0 (57.0) 51.9 (58.8) 59.9 (78.2) 199.8 * 26.7 (39.8) 22.3 (33.0)

20

1 7.2 (8.2) 3.6 (3.8) 3.3 (3.7) 12.1 (11.5) 5.6 (6.5) 11.1 * 3.6 (5.6) 3.0 (3.9)
10 34.9 (46.2) 18.4 (21.7) 17.1 (20.4) 26.1 (26.8) 27.1 (35.9) 63.4 * 11.1 (18.6) 9.4 (15.1)
20 59.3 (76.8) 35.7 (41.5) 33.8 (39.7) 42.8 (45.5) 49.6 (57.2) 145.4 * 17.8 (28.8) 15.2 (24.8)
30 78.8 (99.3) 52.9 (60.7) 50.8 (58.7) 59.8 (64.2) 68.6 (76.3) 200.5 * 24.5 (37.5) 20.6 (32.3)

30

1 7.2 (8.2) 4.0 (4.3) 3.5 (3.9) 19.7 (18.5) 5.9 (6.4) 11.7 * 3.6 (5.3) 3.1 (4.2)
10 34.6 (45.3) 20.3 (23.7) 18.1 (21.5) 34.2 (33.4) 28.2 (34.8) 53.6 * 11.3 (18.6) 9.7 (16.2)
20 59.2 (76.0) 38.0 (44.3) 35.1 (41.1) 50.8 (51.7) 49.4 (59.1) 193.3 * 18.0 (29.1) 15.5 (25.9)
30 78.8 (99.1) 55.4 (65.0) 52.0 (60.8) 67.2 (71.1) 65.1 (81.4) 247.5 * 24.6 (37.9) 20.8 (33.3)

we compare with GMG, a variation of the proposed method that as-
sumes that the whole scene is a plane and all objects lie on that com-
mon ground plane, similarly to [4], by masking pixels that are in the
estimated ground plane that is defined as the convex hull between
the bottom corners of the detections and the bottom corners of the
frame.

To compare the methods fairly and only on the accuracy of their
prediction, we use the past TP ground-truth locations of an object to
predict its future TF locations. If λ is the object index, the ground
truth annotations, X̂ =

{
x̂λk |∀λ, ∀k

}
, of the training dataset includes

both static and moving objects. We quantify the prediction error as:

MSE =
1

ΛK′

Λ∑
λ=1

kλe−TF+1∑
k′=kλs+TP

k′+TF−1∑
k=k′

||x̂λk − x̃λk ||22, (7)

where Λ is the total number of objects in the video, kλs and kλe
are the first and last frame where object λ is visible by the camera,
K′ = TF

∑Λ
λ=1 (kλe − kλs − TF − TP + 2) is the total number of

predictions within the video, and || · ||2 is the L2-norm.
For the good-features-to-track detector [20] and for the sparse

tracker [21] we use the default parameters of the OpenCV imple-
mentation (version 3.4.1): 50 as maximum number of corners, 0.01
as quality level and 10 pixels as minimum distance for the detector;
and 21 × 21 as window size, three maximum levels of the pyramid
and 0.001 as minimum eigenvalue threshold for the tracker. We cal-
culate the homography from the set of correspondent keypoints with
the OpenCV implementation and default parameters. The margin in
the masking is c = 0.05. The minimum number of keypoints per cell
is set to Nm = 20. For creating the filtering mask, we use SDP [25]
to detect only humans.

We use three publicly available datasets: Multiple Object Track-
ing Benchmark 2015 (MOTB15 [26]), 2016 (MOTB16 [27]) and
2017 (MOTB17 [28]). These datasets are composed of moving
sequences recorded from first-person-vision and static cameras. For
the first three experiments, we build a training, validation and test
dataset from the MOTB training sequences aiming to balance the
number of annotations between static and moving cameras and do

not use the same video in different subsets. The training dataset ac-
counts for 44% of the dataset and it is composed of ADL-Rundle-8,
ETH-Bahnhof, ETH-Sunnyday, KITTI-13, KITTI-17, PETS09-
S2L1, TUD-Campus, TUD-Stadtmitte, MOT16-04, MOT16-10,
MOT17-04 and MOT17-10. The validation dataset accounts for
16% of the dataset and it is composed of MOT16-05, MOT16-09,
MOT17-05 and MOT17-09. The test dataset accounts for 40% of
the dataset and it is composed of Venice-2, MOT16-02, MOT16-11,
MOT16-13, MOT17-02, MOT17-11, MOT17-13.

Table 2 compares the prediction accuracy of GM against that of
the other algorithms. LP, EM, LR and LSTM accumulate predic-
tion errors when the prediction time is long (TF = {10, 20, 30}) for
any TP , except for TP = 2 where they obtain competitive results.
These methods obtain an average prediction error of 55.4, 52.0, 67.2
and 65.1 pixels when predicting over 30 frames and having observed
30 past frames. GM obtains consistently the best result followed by
GMG except for (TP = {2, 10}, TF = 1) where they are slightly
outperformed by LP and EM. In general, the larger TP (the more past
frames are observed), the lower the prediction error, with a reduction
of the improvement with TP = {20, 30}. SH has large prediction
errors due to the lack of a constraint for maintaining a spatial distri-
bution of keypoints and of a masking procedure to eliminate outlier
local motions.

Regarding to the robustness to detection errors, Figure 2 shows
the object prediction accuracy in the presence of Gaussian noise of
varying standard deviation in the past TP observed object locations.
While LR and LSTM are more robust to noise in relative terms,
GMG and GM outperform the rest in absolute values when the stan-
dard deviation of the noise is lower than 20.

Regarding to the robustness to frame-rate reduction, Figure 3
shows the prediction errors when downsampling the frame rate. To
constrain the temporal observation when the video frame rate de-
creases, we select TP and TF as TP = dT

′
PF

γ
e and TF = dT

′
FF

γ
e

where T ′P and T ′F are the past/future number of seconds to ob-
serve/predict and F is the original frame rate of the video. When
γ = 1 (50% frame rate reduction), GM has the lowest absolute
prediction error with an error reduction of 41% with respect to the
next best-performing methods (LP and EM), and 58% with respect
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Fig. 2. Average prediction error in all moving-camera videos of the
testing dataset for the next TF = 30 frames when the observations
over the past TP = 30 frames are contaminated by Gaussian noise
of varying standard deviation. For better visualization, not showing
SH as its error is at least an order of magnitude larger. KEY – px:
pixels; SP , LP , EM , LR , LSTM , GMG and
GM .
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Fig. 3. Prediction errors (average and its standard deviation) in all
moving-camera videos of the testing dataset for the next 0.5 s when
observing their locations in the past 0.5 s. For better visualization,
not showing SH as its error is at least an order of magnitude larger.
KEY – px: pixels, SP , LP , EM , LR , LSTM ,
GMG and GM .

to the subsequent next best-performing methods (LR and SH). When
γ = 4 the error reduction is of 10% with respect to the next best-
performing methods (LP and EM), and 47% with respect to the
subsequent next best-performing methods (LR and SH). EM and
LP perform similarly (3% and 5% larger prediction error) to GM
when γ = 5 as GM accumulate global motion estimations errors
over time. Using only 25% of the original frame rate (γ = 3),
GM obtains comparable prediction accuracy to LP, EM, LR and
LSTM at the original frame rate (γ = 0). These results indicate that
the proposed method allows one to reduce the camera acquisition
rate while still obtaining a lower prediction error compared to other
algorithms.

We compare the processing speed of the methods under com-
parison and the proposed method with no code optimization in the
testing dataset. All experiments are executed in a computer with an
Intel i7 microprocessor with 16GB of RAM. The proposed method
achieves average processing speed faster than 28 frames per second.
Methods that do not perform image processing techniques (LSTM,

Table 3. Influence of different predictors in tracking performance
(average MOTA and MOTP and their standard deviation on the
MOTB17 training dataset). KEY – Ca: camera motion; M: moving-
camera sequences only; C: complete dataset; LP: linear predic-
tion [15]; SH: simple homography-based predictor [4]; GMG: pro-
posed global motion with ground masking; GM: proposed global
motion prediction. The higher the number the better the perfor-
mance. Best and second best performing methods are shown in bold
and italic, respectively.

Metric Ca LP SH GMG GM

MOTA M 56.4 (0.5) 53.0 (0.4) 58.1 (0.5) 60.0 (0.2)
C 62.6 (0.2) 61.4 (0.2) 63.2 (0.2) 64.0 (0.1)

MOTP M 81.1 (0.0) 80.9 (0.1) 81.5 (0.1) 81.7 (0.1)
C 83.7 (0.1) 83.6 (0.1) 83.9 (0.1) 83.9 (0.1)

LP, EM and SP) compute the predictions in less than 1 millisecond
per frame. SH works at an average of 44 frames per second.

Finally, we test the proposed predictor in a real application for
first-person vision. We embed the predictor in a state-of-the-art
multi-object tracker, the EA-PHD-PF [18], and compare the track-
ing performance against different prediction models. Table 3 shows
the tracking performance with different prediction models on the
MOTB17 training dataset measured as the average Multiple Object
Tracking Accuracy (MOTA) and Multiple Object Tracking Preci-
sion (MOTP) [29] on five tracking runs with default parameters
and SDP [25] as detector. When GM is used as prediction model,
the highest MOTA and MOTP scores are achieved with moving
cameras: GM allows the tracker to improve 3.6 MOTA points and
0.6 MOTP points compared to using LP as prediction model. This
improvement in accuracy and precision are meaningful using the
confidence intervals that depend on the accuracy of the ground-truth
annotation [30]. An in-depth description of the integration of GM
in the tracker and an extensive analysis of the results are available
in [31].

4. CONCLUSION

We presented GM, an object motion predictor that is aware of the
global camera motion. The proposed predictor does not require
camera calibration parameters, the presence of planar surfaces, or
prior knowledge about scene and objects. GM considerably reduces
the prediction error compared to the state-of-the-art predictors when
predicting over 30 frames. Moreover, GM outperforms the state-of-
the-art models while processing fewer frames, thus allowing one to
intentionally reduce the video frame rate and hence the energy con-
sumption, an important aspect for first-person vision. Finally, we
showed that when GM is integrated into a tracker, its performance
increases by 3.6 MOTA points in moving-camera scenarios.
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