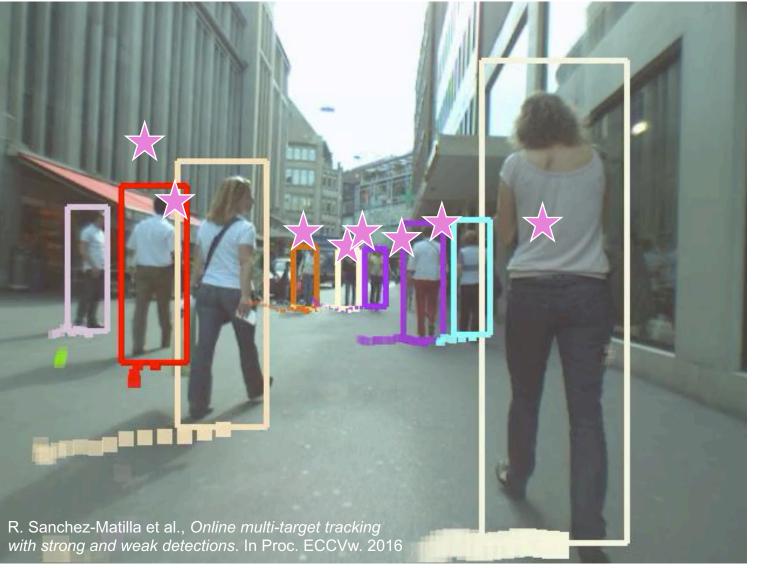
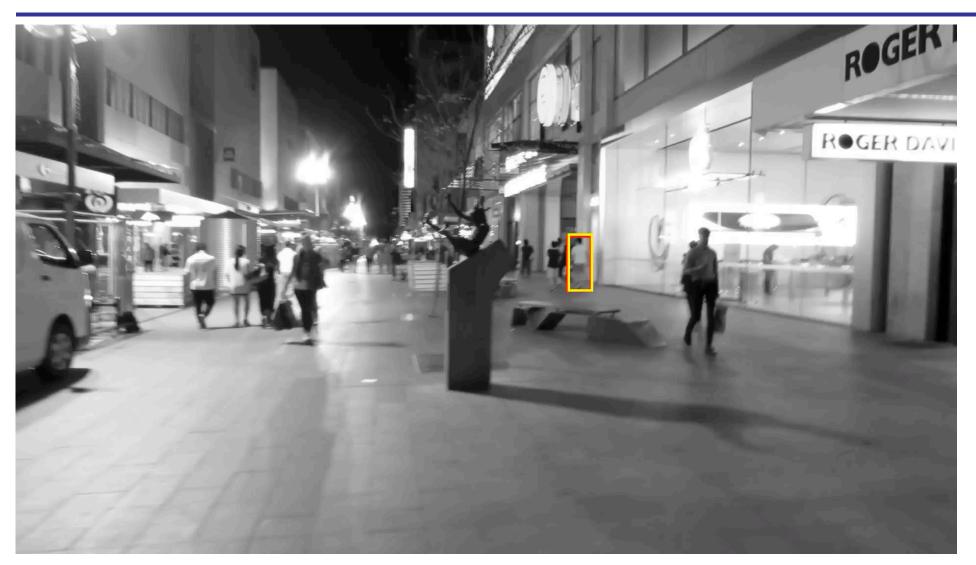
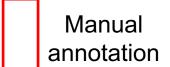
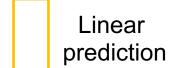
A predictor of moving objects for first-person vision


Ricardo Sanchez-Matilla and Andrea Cavallaro

Linear motion prediction for tracking




Note tracker does not use appearance features



Linear prediction of a moving object (with a moving camera)

Challenges

- unknown camera motion
- unknown object motion

		Assumption	
Reference	Camera calibration	Scene specific	Object-location specific

		Assumption	
Reference	Camera calibration	Scene specific	Object-location specific
[1]	7 1	-7 1	?

[1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017

		Assumption	
Reference	Camera calibration	Scene specific	Object-location specific
[1]	-7 1	~	?
[2]		?	7

^[1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017

^[2] G. Mattyus et al., Multi target tracking on aerial videos. In Proc. ISPRS Workshop. 2010

		Assumption	
Reference	Camera calibration	Scene specific	Object-location specific
[1]	[]	~	7
[2]		?	7
[3]		7 1	7

^[1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017

^[2] G. Mattyus et al., Multi target tracking on aerial videos. In Proc. ISPRS Workshop. 2010

^[3] S. Li et al., Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proc. AAAI 2017

	Assumption													
Reference	Camera calibration	Scene specific	Object-location specific											
[1]	7 1	?	?											
[2]		?												
[3]		~	7											
[4]		7												

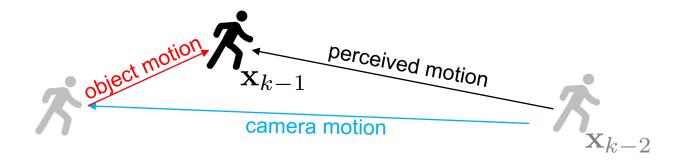
- [1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017
- [2] G. Mattyus et al., Multi target tracking on aerial videos. In Proc. ISPRS Workshop. 2010
- [3] S. Li et al., Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proc. AAAI 2017
- [4] S. Lankton et al., Improved tracking by decoupling camera and target motion. In Proc. SPIE. 2018

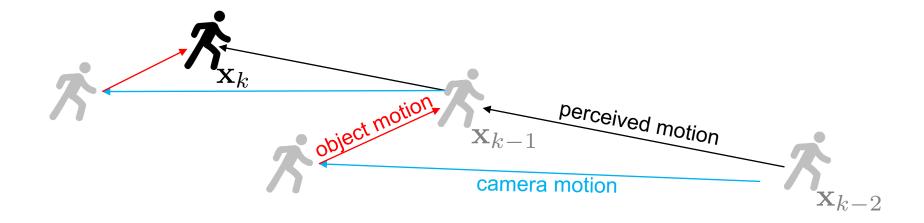
		Assumption	
Reference	Camera calibration	Scene specific	Object-location specific
[1]	7 1	?	7
[2]		?	7
[3]		~	7
[4]		?	7
[5]	-		

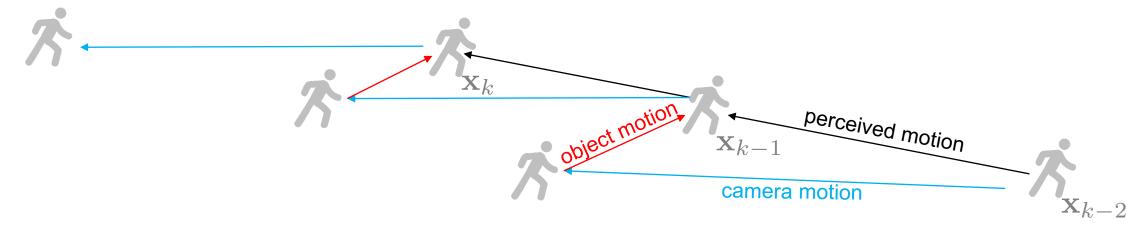
- [1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017
- [2] G. Mattyus et al., Multi target tracking on aerial videos. In Proc. ISPRS Workshop. 2010
- [3] S. Li et al., Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proc. AAAI 2017
- [4] S. Lankton et al., Improved tracking by decoupling camera and target motion. In Proc. SPIE. 2018
- [5] W. Choi et al., A general framework for tracking multiple people from a moving camera. IEEE TPAMI. 2018

	Assumption													
Reference	Camera calibration	Scene specific	Object-location specific											
[1]	-7 1	?	?											
[2]		?	7											
[3]		?	?											
[4]		?	7											
[5]	7 1													
Proposed														

- [1] J. Arrospide et al., Homography-based ground plane detection using a single on-board camera. In IET ITS. 2017
- [2] G. Mattyus et al., Multi target tracking on aerial videos. In Proc. ISPRS Workshop. 2010
- [3] S. Li et al., Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proc. AAAI 2017
- [4] S. Lankton et al., Improved tracking by decoupling camera and target motion. In Proc. SPIE. 2018
- [5] W. Choi et al., A general framework for tracking multiple people from a moving camera. IEEE TPAMI. 2018

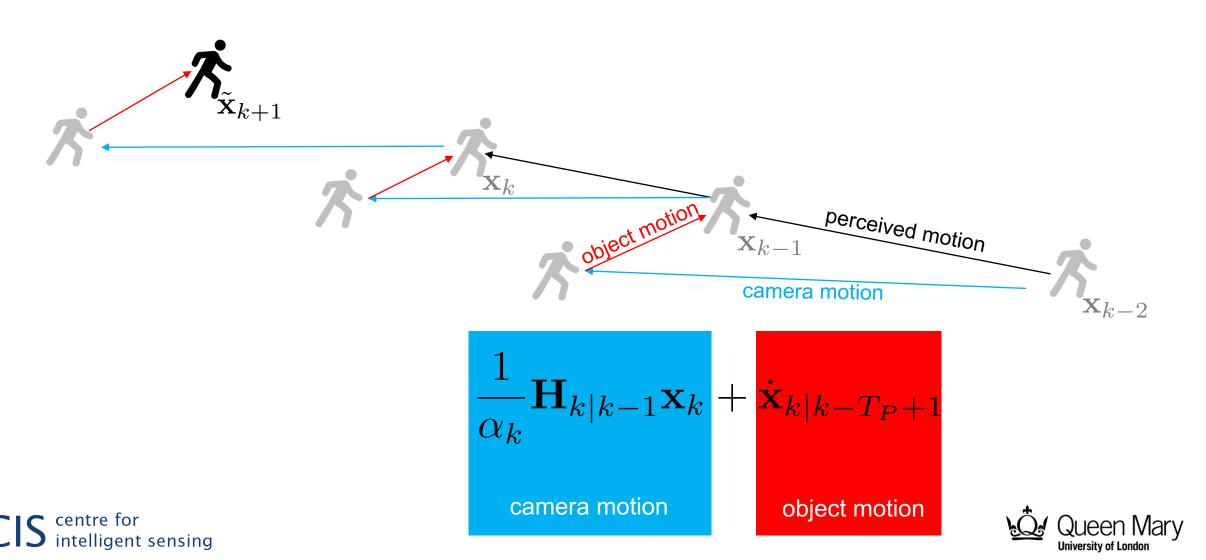


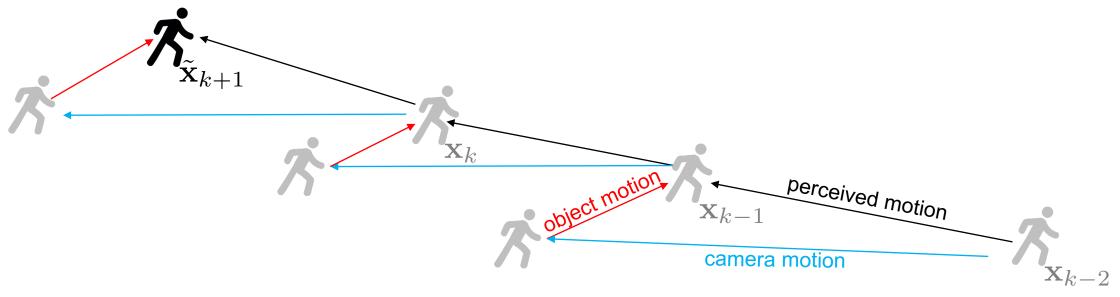


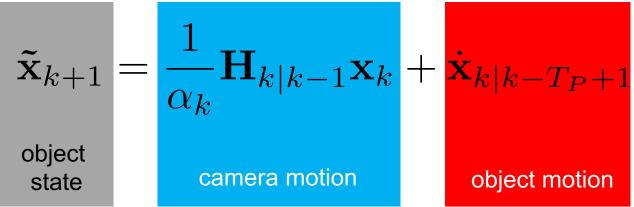


The proposed approach

 T_P : observed frames

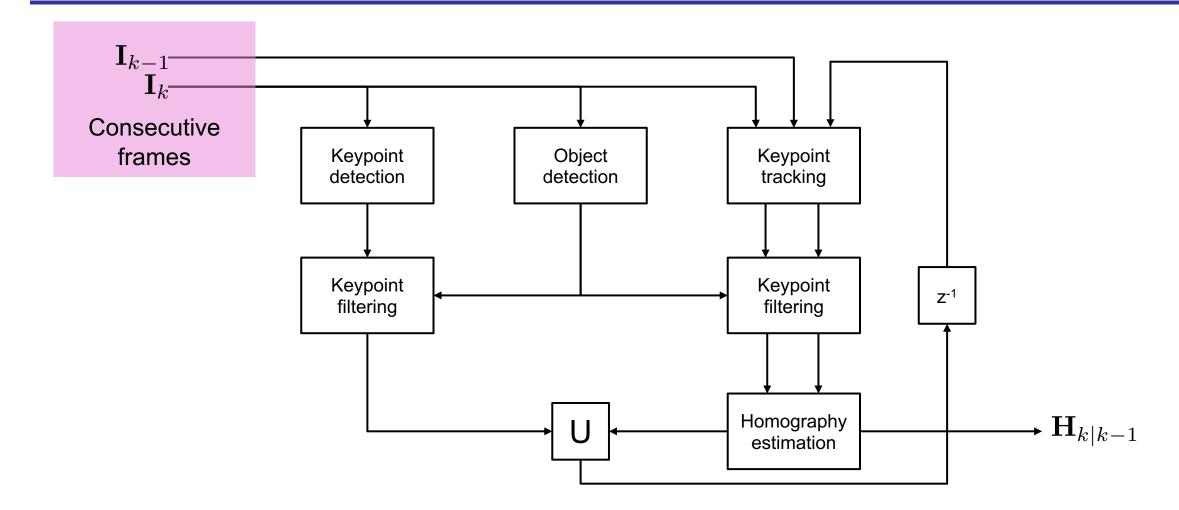

$$rac{1}{lpha_k}\mathbf{H}_{k|k-1}\mathbf{x}_k$$
 camera motion


The proposed approach


 T_P : observed frames

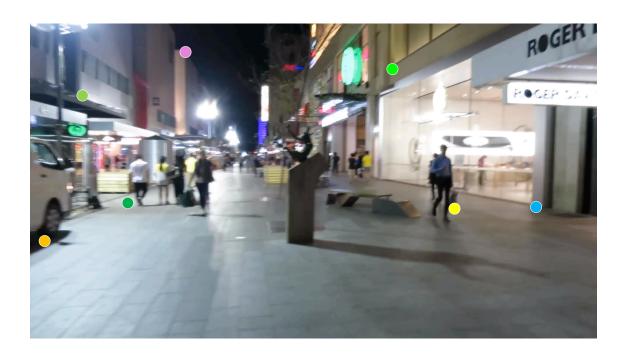
The proposed approach

 T_P : observed frames



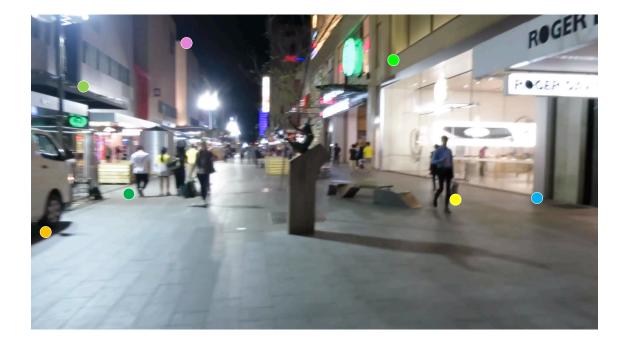

Camera motion estimation

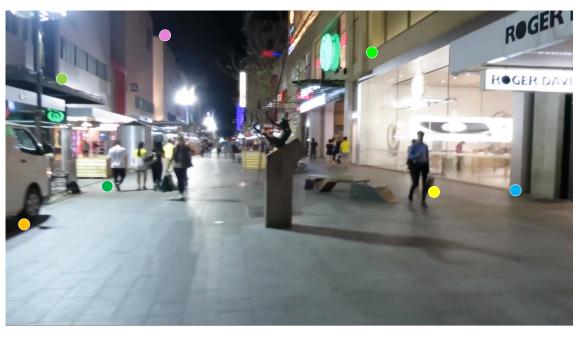
Camera motion estimation



Keypoint detection

Frame k-2



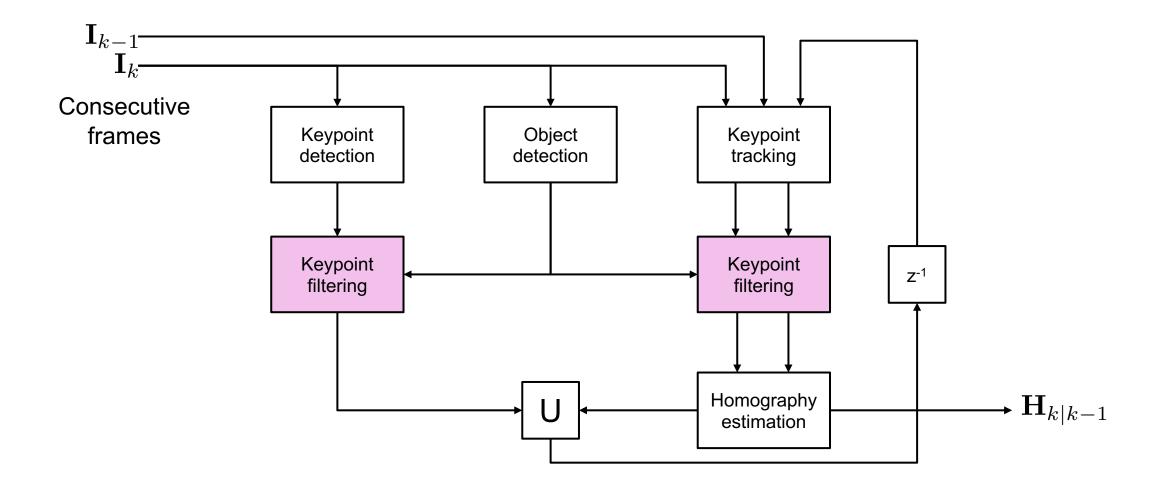


Keypoint tracking


Frame k-2

Frame k-1

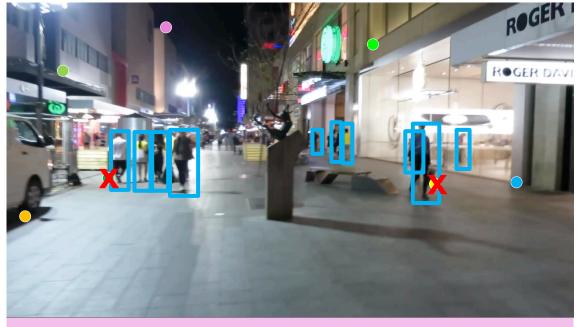
Keypoints


Note

association between keypoints

Camera motion estimation

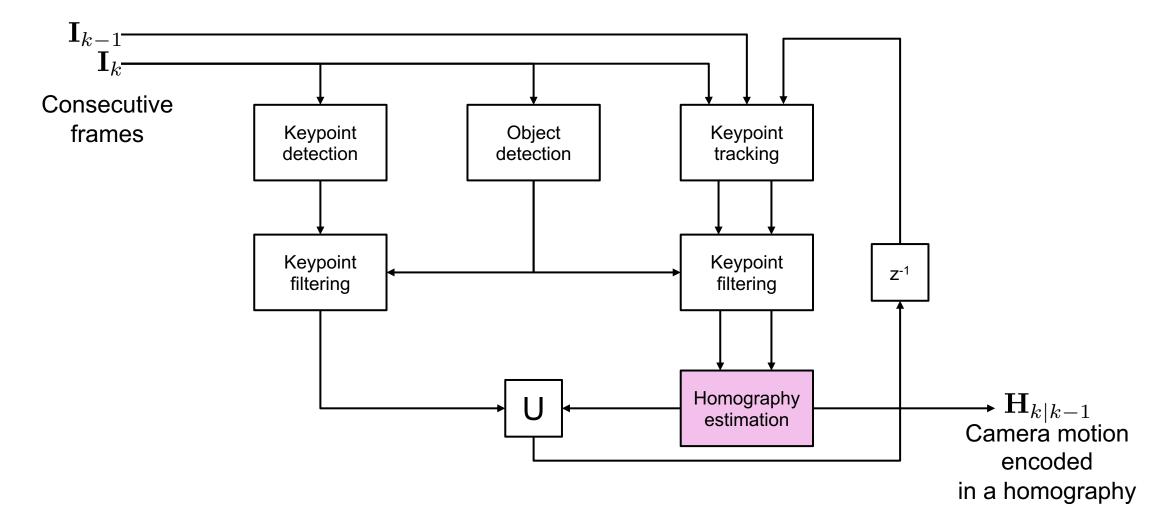




Keypoint filtering

Frame k-2

Frame k-1


Keypoints within (potential) moving objects are removed

Camera motion estimation

Validation

- Dataset: Multiple Object Tracking Challenge 2015, 2016 and 2017
- Prediction accuracy: mean squared error (bounding boxes centres)
- Comparison
 - Location based
 - Static Prediction (SP)
 - Linear Prediction (LP) [6]
 - Exponential Prediction (EM) [7]
 - Linear Regression (LR)
 - LSTM [8]
 - Location and image based
 - Simple Homography-based prediction (SH) [3]
 - Proposed with keypoints on ground plane (GMG)
 - Proposed (GM)
 - [3] S. Li et al., Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proc. AAAI. 2017
 - [6] K. Shafique et al., A rank con-strained continuous formulation of multi-frame multi-target tracking problem. In CVPR. 2018
 - [7] V. Akbarzadeh et al., Target trajectory prediction in PTZ camera networks. In CVPR. 2013
 - [8] M. Babaee et al., Occlusion handling in tracking multiple people using RNN. In Proc. ICIP. 2018

→ number of observed frames number of frames to predict Proposed T_F SP LP \mathbf{EM} LR LSTM SH **GMG** GM T_P 10 20 30 10 20 30 10 20 20 30 10 30 20 30

number of observed frames
number of frames to predict

T_P	T_F		SP	I	LP	F	EM	I	LR	LR LSTM	LR LSTM SH	LR LSTM SH GMG
	1	7.3	(8.2)	2.1	(4.2)	2.1	(4.2)					
2	10	35.0	(47.4)	13.7	(19.6)	13.7	(19.6)					
2	20	60.3	(81.2)	31.2	(40.5)	31.2	(40.5)					
	30	80.5	(106.1)	50.7	(62.2)	50.7	(62.2)					
	1	7.2	(8.2)	2.8	(3.4)	2.7	(3.4)					
10	10	35.0	(46.8)	15.4	(18.7)	14.9	(18.3)					
10	20	59.9	(79.4)	32.0	(38.0)	31.3	(37.5)					
	30	79.4	(101.8)	49.7	(57.6)	49.0	(57.0)					
	1	7.2	(8.2)	3.6	(3.8)	3.3	(3.7)					
20	10	34.9	(46.2)	18.4	(21.7)	17.1	(20.4)					
20	20	59.3	(76.8)	35.7	(41.5)	33.8	(39.7)					
	30	78.8	(99.3)	52.9	(60.7)	50.8	(58.7)					
	1	7.2	(8.2)	4.0	(4.3)	3.5	(3.9)					
20	10	34.6	(45.3)	20.3	(23.7)	18.1	(21.5)					
30	20	59.2	(76.0)	38.0	(44.3)	35.1	(41.1)					
	30	78.8	(99.1)	55.4	(65.0)	52.0	(60.8)					

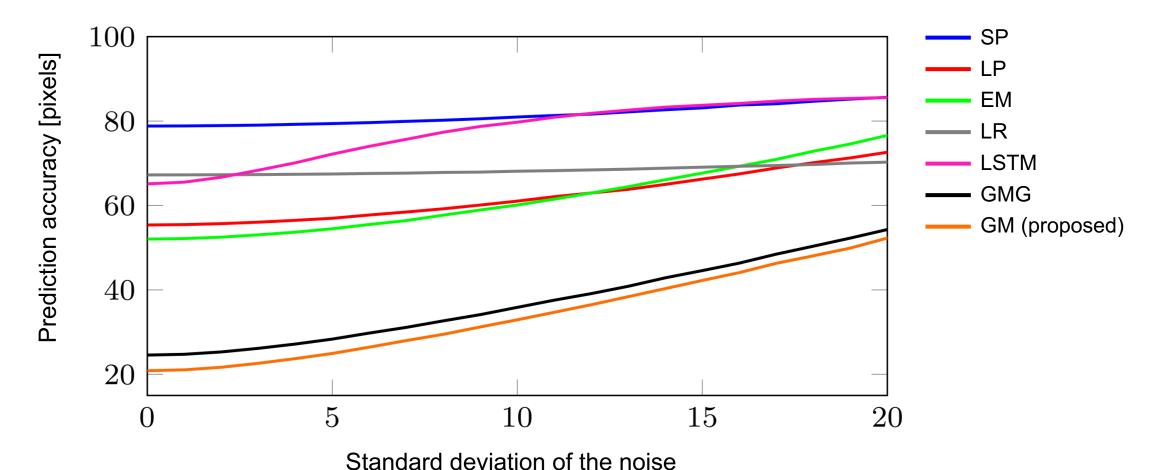
→ number of observed frames

number of frames to predict

T_P	T_F	SP		SP LP		F	EM I			LR LSTM				GMG	GM
	1	7.3	(8.2)	2.1	(4.2)	2.1	(4.2)	2.1	(4.2)	6.1	(7.0)	2.8	*		
2	10	35.0	(47.4)	13.7	(19.6)	13.7	(19.6)	13.7	(19.6)	27.3	(36.9)	69.9	*		
2	20	60.3	(81.2)	31.2	(40.5)	31.2	(40.5)	31.2	(40.5)	47.4	(62.9)	194.6	*		
	30	80.5	(106.1)	50.7	(62.2)	50.7	(62.2)	50.7	(62.2)	64.8	(82.7)	292.7	*		
	1	7.2	(8.2)	2.8	(3.4)	2.7	(3.4)	5.2	(5.8)	5.3	(6.5)	10.9	*		
10	10	35.0	(46.8)	15.4	(18.7)	14.9	(18.3)	17.6	(20.2)	25.0	(35.5)	55.4	*		
10	20	59.9	(79.4)	32.0	(38.0)	31.3	(37.5)	34.1	(39.2)	44.0	(60.5)	140.3	*		
	30	79.4	(101.8)	49.7	(57.6)	49.0	(57.0)	51.9	(58.8)	59.9	(78.2)	199.8	*		
	1	7.2	(8.2)	3.6	(3.8)	3.3	(3.7)	12.1	(11.5)	5.6	(6.5)	11.1	*		
20	10	34.9	(46.2)	18.4	(21.7)	17.1	(20.4)	26.1	(26.8)	27.1	(35.9)	63.4	*		
20	20	59.3	(76.8)	35.7	(41.5)	33.8	(39.7)	42.8	(45.5)	49.6	(57.2)	145.4	*		
	30	78.8	(99.3)	52.9	(60.7)	50.8	(58.7)	59.8	(64.2)	68.6	(76.3)	200.5	*		
	1	7.2	(8.2)	4.0	(4.3)	3.5	(3.9)	19.7	(18.5)	5.9	(6.4)	11.7	*		
30	10	34.6	(45.3)	20.3	(23.7)	18.1	(21.5)	34.2	(33.4)	28.2	(34.8)	53.6	*		
30	20	59.2	(76.0)	38.0	(44.3)	35.1	(41.1)	50.8	(51.7)	49.4	(59.1)	193.3	*		
	30	78.8	(99.1)	55.4	(65.0)	52.0	(60.8)	67.2	(71.1)	65.1	(81.4)	247.5	*		

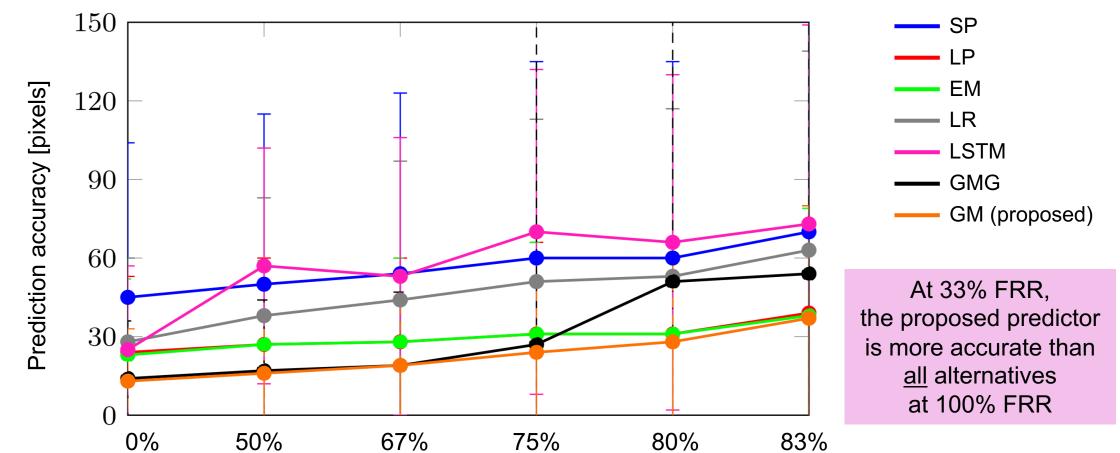
→ number of observed frames

number of frames to predict


T_P	T_F	SP]	LP	F	EM	I	LR	LS	STM	SH		G.	MG	G	SM
	1	7.3	(8.2)	2.1	(4.2)	2.1	(4.2)	2.1	(4.2)	6.1	(7.0)	2.8	*	2.2	(4.2)	2.2	(4.2)
2	10	35.0	(47.4)	13.7	(19.6)	13.7	(19.6)	13.7	(19.6)	27.3	(36.9)	69.9	*	16.0	(26.4)	13.0	(16.8)
2	20	60.3	(81.2)	31.2	(40.5)	31.2	(40.5)	31.2	(40.5)	47.4	(62.9)	194.6	*	31.0	(42.6)	25.1	(31.9)
	30	80.5	(106.1)	50.7	(62.2)	50.7	(62.2)	50.7	(62.2)	64.8	(82.7)	292.7	*	46.1	(61.3)	37.5	(46.0)
	1	7.2	(8.2)	2.8	(3.4)	2.7	(3.4)	5.2	(5.8)	5.3	(6.5)	10 04	e \	3.5	(5.2)	2.9	(3.7)
10	10	35.0	(46.8)	15.4	(18.7)	14.9	(18.3)	17.6	(20.2)	25.0	(35.5)	accura,	~	11.5	(18.8)	9.5	(14.2)
10	20	59.9	(79.4)	32.0	(38.0)	31.3	(37.5)	34.1	(39.2)	44.0	Syon	+0.3	*	19.2	(30.4)	16.0	(24.2)
	30	79.4	(101.8)	49.7	(57.6)	49.0	(57.0)	51.9	$ \begin{array}{c} (5.8) \\ (20.2) \\ (39.2) \\ (58.8) \\ \hline (1, 1, 1, 2, 3, 4, 4, 5, 5, 5, 5, 6, 6, 4, 2, 5, 6, 6, 4, 2, 6, 6, 4, 2, 6, 6, 4, 2, 6, 4, 6, 4, 2, 6,$	ime	5 (1.2)	199.8	*	26.7	(39.8)	22.3	(33.0)
	1	7.2	(8.2)	3.6	(3.8)	3.3	(3.7)	12.1	(1107	¿ till è	(6.5)	11.1	*	3.6	(5.6)	3.0	(3.9)
20	10	34.9	(46.2)	18.4	(21.7)	17.1	(20.4)	26	to X L.	27.1	(35.9)	63.4	*	11.1	(18.6)	9.4	(15.1)
20	20	59.3	(76.8)	35.7	(41.5)	33.8	(39.7)	7 Ab	(45.5)	49.6	(57.2)	145.4	*	17.8	(28.8)	15.2	(24.8)
	30	78.8	(99.3)	52.9	(60.7)	50.8	(58.7)	59.8	(64.2)	68.6	(76.3)	200.5	*	24.5	(37.5)	20.6	(32.3)
	1	7.2	(8.2)	4.0	(4.3)	3.5	(3.9)	19.7	(18.5)	5.9	(6.4)	11.7	*	3.6	(5.3)	3.1	(4.2)
30	10	34.6	(45.3)	20.3	(23.7)	18.1	(21.5)	34.2	(33.4)	28.2	(34.8)	53.6	*	11.3	(18.6)	9.7	(16.2)
30	20	59.2	(76.0)	38.0	(44.3)	35.1	(41.1)	50.8	(51.7)	49.4	(59.1)	193.3	*	18.0	(29.1)	15.5	(25.9)
	30	78.8	(99.1)	55.4	(65.0)	52.0	(60.8)	67.2	(71.1)	65.1	(81.4)	247.5	*	24.6	(37.9)	20.8	(33.3)

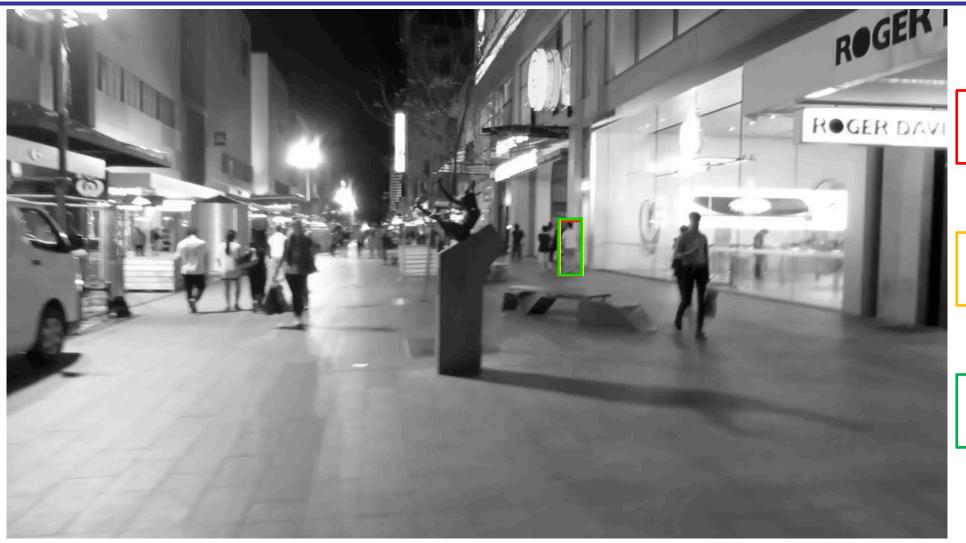
Robustness to noisy observations

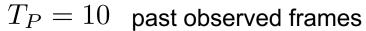
- Gaussian noise introduced to observed past locations
- Prediction accuracy on all objects and for all frames of the test dataset



Robustness to frame-rate reduction

Prediction accuracy on all objects and for all frames of the test dataset



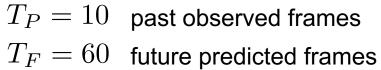

Example

Manual annotation

Linear prediction

Proposed

 $T_F = 60$ future predicted frames



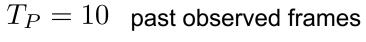
Example

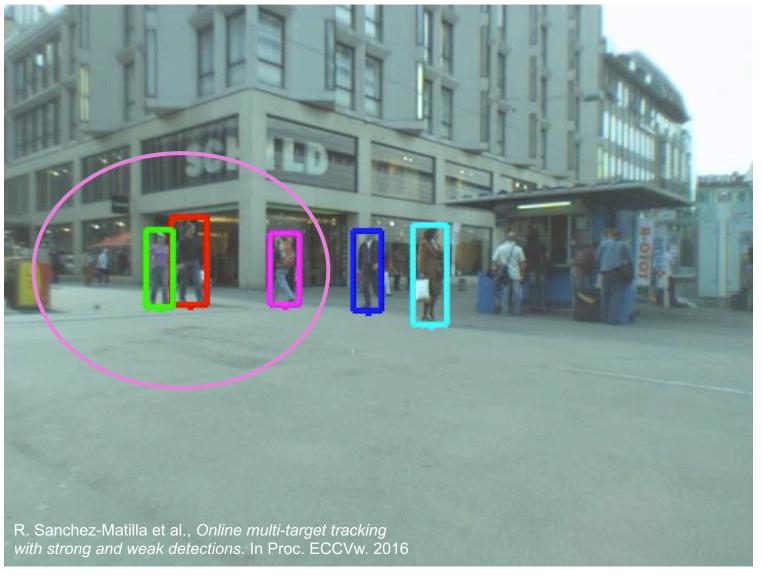
Manual

annotation

Linear

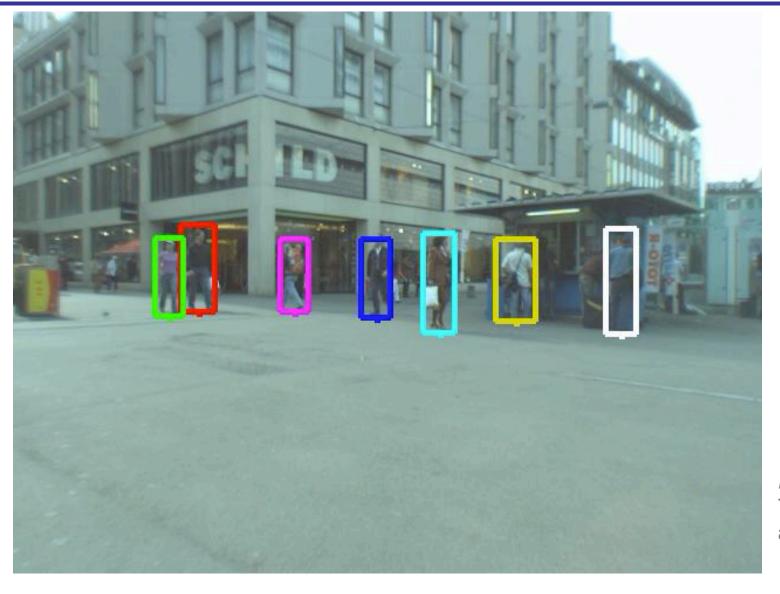
prediction


Example of error (occlusions)


 $T_F = 60$ future predicted frames

Tracking with linear motion prediction

False-positive initialisations



Note
Tracking does not use appearance features

Sample of tracking with proposed motion prediction

Note
Tracking does not use appearance features

Conclusions

Simple object motion predictor that

- requires no camera calibration, scene nor object location assumptions
- is 3x more accurate than LSTM and 2x more accurate than linear prediction
- is as accurate as linear prediction when processing only 1/3 of the frames
- is real-time
- improves tracking results

Future work

- integration on a moving platform (robot) for navigation
- energy consumption analysis

