Ricardo Sanchez-Matilla

London, UK | https://risama.github.io | ricardosm89@gmail.com

Computer vision | Privacy | Robustness of machine/deep learning | Robotics

PROFILE

- Researcher carrying out independent and collaborative investigations on challenging problems within the fields of computer vision, machine/deep learning, and privacy
- Designed vision and audio-visual algorithms for object localization, tracking, and estimation of physical properties of unknown objects for accurate and safe dynamic human-robot interaction
- Designed privacy protection algorithms for preventing the unwanted inference of private information by deep learning
- Demonstrated strong software experience on Python, C/C++, MatLab, ROS, PyTorch, and OpenCV; and hardware experience with robotic arms (e.g. UR5), multi-rotor drones (e.g. DJI), and motion capture systems (e.g. OptiTrack)
- Management of stress and uncertainty while pursuing a non-funded Ph.D., supported through multiple research contracts
- Open to new opportunities from September 2020 in London (UK)

RESEARCH EXPERIENCE

Computer Vision Research Assistant, Queen Mary University of London, London Since Oct 2014 – current

- <u>Coordination skills</u>: worked in international collaborations with top academic and industrial partners in projects such as COPCAMS and CORSMAL in multiple disciplines such as computer vision, multimedia, deep learning and robotics
- <u>Technical skills</u>: obtained strong technical skills in <u>C/C++</u> for single and multiple object tracking with Bayesian Inference (Probability Hypothesis Density Particle Filter) [C1, C2, C3]; <u>Python</u> with <u>PyTorch</u> and <u>OpenCV</u> libraries for the development of traditional and deep learning models for 3D object detection and 3D shape estimation [J3, C8] (e.g. multi-view geometry and CNN); object motion prediction [C7] (e.g. LSTM), adversarial attacks for deep learning robustness [C9] and for privacy protection of information from images [J4, C5]; <u>ROS</u> for controlling robotic arms guided by computer vision algorithms [J3]; and <u>MatLab</u> for designing and developing object detectors in highly-dense videos [J1]
- <u>Organisation skills:</u> developed planning, organisation and writing skills for reporting research findings trough progress reports, publications, and presentations using <u>Latex</u>
- <u>Awarded</u> as the best performing online multiple object tracker in MOT Challenge at ECCVw [C1]

Computer Vision Intern, The Alan Turing Institute, London

- <u>Collaboration skills</u>: collaborated with internal colleagues and supervisors in time-constrained projects for problem and data analysis, solution design and implementation, and presentation of the research findings in the form of reports and presentations to supervisors and the institution (http://bit.ly/RSM-ATI)
- <u>Technical skills</u>: acquired and developed knowledge on <u>Python</u>, and libraries such as <u>PyTorch</u> and <u>OpenCV</u> for designing a novel combination of Bayesian Inference and deep learning (i.e. convolutional Siamese Network) for improving single object tracking over occlusions
- Demonstrated quick adaptation to new environments for solving challenging problems under time constrains

Computer Vision Researcher, Universidad Autónoma de Madrid, Madrid

 Designed and developed algorithms for detection of objects in high-dense videos using <u>C++</u> and <u>MatLab</u> using <u>OpenCV</u> library

EDUCATION

Ph.D. in Computer Sciences, Queen Mary University of London, London

- Thesis: Object localisation, dimensions estimation and tracking
- Localising, estimating the physical properties of, and tracking objects from audio and video signals for applications such as surveillance, search and rescue, extraction of objects' patterns and robotic applications
- Protecting private information of images from unwanted inferences that use deep learning via adversarial attacks
- <u>Data collection</u>: design, development, acquisition, data processing, promotion of self-collected datasets for tasks such as auditory drones (http://bit.ly/RSM-AVQ) and collaboratively object recognition (http://bit.ly/RSM-CORSMAL)
- <u>Autonomous research</u>: developed skills for carrying out independent research such as data collection and analysis, problem solving, algorithm design and implementation, critical analysis, and effective verbal and written communication skills

B.Sc. and M.Sc. in Telecommunication Eng., Universidad Autónoma de Madrid, Madrid

- Thesis Hierarchical detection of groups of people under occlusions
- Designed people detection algorithm in high-density settings trough a hierarchical detection method from visual data

Jun 2018 – Sep 2018

Sep 2013 – Sep 2014

(exp.) 2020

2014

FURTHER WORK EXPERIENCE

Senior Teacher Assistant, Queen Mary University of London, London

- Data Mining course for under- and post-graduate students on data analysis (e.g. <u>Weka</u>), regression, regularisation, classification (e.g. KNN, logistic regression, decision trees, Naïve Bayes), feature selection (e.g. PCA), and clustering (e.g. Kmeans)
- Data Analytics course for under- and post-graduate students on statistical foundations, financial and scientific applications of data science
- <u>Planning and leadership skills</u>: coordinated six teacher assistants for delivering laboratory course to over 200 students using <u>Weka</u>, <u>Python</u> and <u>MatLab</u>

SELECTED PUBLICATIONS

 [J4]* Exploiting vulnerabilities of deep neural networks for privacy protection Method for protecting private information from unwanted automatic inferences and robust to defences IEEE Transactions on Multimedia 	2020
 [J3]* Benchmark for human-to-robot handovers of unseen containers with unknown fillings Benchmark for evaluating, and vision-robotic baseline, for human-to-robot handovers of unseen containers IEEE Transactions on Robotics and Automation Letters 	2020
 [J2]* Towards robust sensing for autonomous vehicles Survey and critical analysis of the emerging field of sensing for autonomous vehicles in adversarial settings IEEE Transactions on Signal Processing Magazine - To appear 	2020
 ColorFool: semantic adversarial colorization Content-based black-box adversarial attack that generates unrestricted perturbations by exploiting image semant Proc. of IEEE/CVF Conference on Computer Vision and Pattern Recognition 	2020 tics
 [C8] Multi-view shape estimation of transparent containers 3D localisation and estimation of physical properties, such as shape and dimensions of unseen objects Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing 	2020
 [C7]* A predictor of moving objects for first-person vision Accurate forecasting (60% more accurate than SOA) of the position of moving objects with moving cameras Proc. of IEEE International Conference on Image Processing 	2019
 [C6] AV sensing from a quadcopter: dataset and baselines for source localization and sound enhancement The first audio-visual dataset recorded outdoors from a quadcopter and baseline results Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems 	2019
 [C5]* Scene privacy protection Method to protect private information of images from unwanted automatic inferences while preserving their util Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing 	2019 ity
 [C4]* Confidence intervals for tracking performance scores Method for estimating the error in annotated datasets and to account for it within the performance measures Proc. of IEEE International Conference on Image Processing 	2018
 [C3] Tracking a moving sound source from a multi-rotor drone Method for tracking a moving sound source from a multi-rotor drone only using audio Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems 	2018
 [C2]* Multi-modal localization and enhancement of multiple sound sources from a micro aerial vehicle Multi-modal method that to enhance the speech of multiple speakers simultaneously talking from a drone Proc. of ACM on Multimedia Conference 	2017
 [J1] Hierarchical detection of persons in groups Object detector of people in highly dense settings using hierarchies of groups of people and body parts Signal, Image and Video Processing 	2017
 [C1]* Online multi-target tracking with strong and weak detections Real-time online multi-object tracker with Probability Hypothesis Density Particle Filter framework Proc. of European Conference on Computer Vision Workshop Awarded as the best performing online tracker in MOT Challenge at ECCVw 	2016

Sep 2017 – Jan 2019